Extracting the relevant delays in time series modelling

作者: C. Goutte

DOI: 10.1109/NNSP.1997.622387

关键词:

摘要: In this contribution, we suggest a convenient way to use generalisation error extract the relevant delays from time-varying process, i.e. that lead best prediction performance. We design generalisation-based algorithm takes its inspiration traditional variable selection, and more precisely stepwise forward selection. The method is compared other selection schemes, as well nonparametric tests aimed at estimating embedding dimension of time series. final application extends these results efficient estimation FIR filters on some real data.

参考文章(17)
Tautvydas Cibas, Françroise Fogelman Soulié, Patrick Gallinari, Sarunas Raudys, Variable Selection with Optimal Cell Damage ICANN ’94. pp. 727- 730 ,(1994) , 10.1007/978-1-4471-2097-1_171
J.E. Moody, Note on generalization, regularization and architecture selection in nonlinear learning systems Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop. pp. 1- 10 ,(1991) , 10.1109/NNSP.1991.239541
Xiangdong He, Haruhiko Asada, A New Method for Identifying Orders of Input-Output Models for Nonlinear Dynamic Systems american control conference. pp. 2520- 2523 ,(1993) , 10.23919/ACC.1993.4793346
Robert Savit, Matthew Green, Time series and dependent variables Physica D: Nonlinear Phenomena. ,vol. 50, pp. 95- 116 ,(1991) , 10.1016/0167-2789(91)90083-L
G. Toussaint, Bibliography on estimation of misclassification IEEE Transactions on Information Theory. ,vol. 20, pp. 472- 479 ,(1974) , 10.1109/TIT.1974.1055260
Hirotugu Akaike, Fitting autoregressive models for prediction Annals of the Institute of Statistical Mathematics. ,vol. 21, pp. 243- 247 ,(1969) , 10.1007/978-1-4612-1694-0_10
N. Murata, S. Yoshizawa, S. Amari, Network information criterion-determining the number of hidden units for an artificial neural network model IEEE Transactions on Neural Networks. ,vol. 5, pp. 865- 872 ,(1994) , 10.1109/72.329683
Babak Hassibi, David G. Stork, Second order derivatives for network pruning: Optimal Brain Surgeon neural information processing systems. ,vol. 5, pp. 164- 171 ,(1992)
C. Molina, N. Sampson, W.J. Fitzgerald, M. Niranjan, Geometrical techniques for finding the embedding dimension of time series Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop. pp. 161- 169 ,(1996) , 10.1109/NNSP.1996.548346
A. I. McLeod, DIAGNOSTIC CHECKING OF PERIODIC AUTOREGRESSION MODELS WITH APPLICATION Journal of Time Series Analysis. ,vol. 15, pp. 221- 233 ,(1994) , 10.1111/J.1467-9892.1994.TB00186.X