作者: H. H. Stroke , V. Jaccarino , D. S. Edmonds , R. Weiss
关键词:
摘要: The atomic-beam magnetic-resonance method was used to measure the nuclear gyromagnetic ratios and hyperfine-structure separations of radioactive isotopes ${\mathrm{Cs}}^{134}$, ${\mathrm{Cs}}^{135}$, ${\mathrm{Cs}}^{137}$. A surface ionization detector used.The were obtained by direct $\ensuremath{\Delta}F=\ifmmode\pm\else\textpm\fi{}1$ transitions near zero field. values $\ensuremath{\Delta}\ensuremath{\nu}$ found for three are: $\ensuremath{\Delta}\ensuremath{\nu}({\mathrm{Cs}}^{134})=10473.626\ifmmode\pm\else\textpm\fi{}0.015 \mathrm{Mc}/sec,$ $\ensuremath{\Delta}\ensuremath{\nu}({\mathrm{Cs}}^{135})=9724.023\ifmmode\pm\else\textpm\fi{}0.015 $\ensuremath{\Delta}\ensuremath{\nu}({\mathrm{Cs}}^{137})=10115.527\ifmmode\pm\else\textpm\fi{}0.015 \mathrm{Mc}/sec.$Pairs transition belonging two different $F$-states, but involving same ${m}_{F}$ values, constitute frequency doublets separated $2{g}_{I}{\ensuremath{\mu}}_{0}H$. From measurements difference frequencies these pairs in fields vicinity 9000 gauss, following $g$-value obtained: $\frac{{g}_{I}({\mathrm{Cs}}^{135})}{{g}_{I}({\mathrm{Cs}}^{133})}=1.05820\ifmmode\pm\else\textpm\fi{}0.00008$, $\frac{{g}_{I}({\mathrm{Cs}}^{137})}{{g}_{I}({\mathrm{Cs}}^{135})}=1.04005\ifmmode\pm\else\textpm\fi{}0.00008$, $\frac{{g}_{I}({\mathrm{Cs}}^{134})}{{g}_{I}({\mathrm{Cs}}^{133})}=1.01447\ifmmode\pm\else\textpm\fi{}0.00029$.The hfs anomalies arising from variation electron wave function over finite distribution magnetization calculated measurements. anomalies, defined ${\ensuremath{\epsilon}}_{2}\ensuremath{-}{\ensuremath{\epsilon}}_{1}=\frac{[{g}_{1}\ensuremath{\Delta}{\ensuremath{\nu}}_{2}(2{I}_{1}+1)]}{[{g}_{2}\ensuremath{\Delta}{\ensuremath{\nu}}_{1}\ifmmode\times\else\texttimes\fi{}(2{I}_{2}+1)]}\ensuremath{-}1$, $\ensuremath{\epsilon}({\mathrm{Cs}}^{133})\ensuremath{-}\ensuremath{\epsilon}({\mathrm{Cs}}^{135})=+0.037\ifmmode\pm\else\textpm\fi{}0.009%,$ $\ensuremath{\epsilon}({\mathrm{Cs}}^{135})\ensuremath{-}\ensuremath{\epsilon}({\mathrm{Cs}}^{137})=\ensuremath{-}0.020\ifmmode\pm\else\textpm\fi{}0.009%,$ $\ensuremath{\epsilon}({\mathrm{Cs}}^{133})\ensuremath{-}\ensuremath{\epsilon}({\mathrm{Cs}}^{134})=+0.169\ifmmode\pm\else\textpm\fi{}0.030%.$The theory Bohr Weisskopf on applied nuclei; calculations are based primarily a single-particle model with varying distributions spin orbital contribution moment. An apparent magic number effect observed.