Deep Learning Modeling of Androgen Receptor Responses to Prostate Cancer Therapies

作者: Oliver Snow , Nada Lallous , Martin Ester , Artem Cherkasov

DOI: 10.3390/IJMS21165847

关键词:

摘要: Gain-of-function mutations in human androgen receptor (AR) are among the major causes of drug resistance prostate cancer (PCa). Identifying that cause resistant phenotype is critical importance for guiding treatment protocols, as well designing drugs do not elicit adverse responses. However, experimental characterization these time consuming and costly; thus, predictive models needed to anticipate guide discovery process. In this work, we leverage data collected on 68 AR mutants, either observed clinic or described literature, train a deep neural network (DNN) predicts response mutants currently used anti-androgens testosterone. We demonstrate use DNN, with general 2D descriptors, provides more accurate prediction biological outcome (inhibition, activation, no-response, mixed-response) mutant-drug pairs compared other machine learning approaches. Finally, developed approach was make predictions mutant latest inhibitor darolutamide, which were then validated by in-vitro experiments.

参考文章(31)
C. E. Bohl, W. Gao, D. D. Miller, C. E. Bell, J. T. Dalton, Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 102, pp. 6201- 6206 ,(2005) , 10.1073/PNAS.0500381102
A. Cherkasov, Inductive Descriptors: 10 Successful Years in QSAR Current Computer - Aided Drug Design. ,vol. 1, pp. 21- 42 ,(2005) , 10.2174/1573409052952288
Casey E. Bohl, Duane D. Miller, Jiyun Chen, Charles E. Bell, James T. Dalton, Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. Journal of Biological Chemistry. ,vol. 280, pp. 37747- 37754 ,(2005) , 10.1074/JBC.M507464200
Maria Sandberg, Lennart Eriksson, Jörgen Jonsson, Michael Sjöström, Svante Wold, New Chemical Descriptors Relevant for the Design of Biologically Active Peptides. A Multivariate Characterization of 87 Amino Acids Journal of Medicinal Chemistry. ,vol. 41, pp. 2481- 2491 ,(1998) , 10.1021/JM9700575
Bostjan Seruga, Alberto Ocana, Ian F. Tannock, Drug resistance in metastatic castration-resistant prostate cancer Nature Reviews Clinical Oncology. ,vol. 8, pp. 12- 23 ,(2011) , 10.1038/NRCLINONC.2010.136
Bruce Gottlieb, Lenore K. Beitel, Abbesha Nadarajah, Miltiadis Paliouras, Mark Trifiro, The androgen receptor gene mutations database: 2012 update Human Mutation. ,vol. 33, pp. 887- 894 ,(2012) , 10.1002/HUMU.22046
A. R. Cherkasov, V. I. Galkin, R. A. Cherkasov, A NEW APPROACH TO THE THEORETICAL ESTIMATION OF INDUCTIVE CONSTANTS Journal of Physical Organic Chemistry. ,vol. 11, pp. 437- 447 ,(1998) , 10.1002/(SICI)1099-1395(199807)11:7<437::AID-POC4>3.0.CO;2-C
Floris H. Groenendijk, René Bernards, Drug resistance to targeted therapies: Déjà vu all over again Molecular Oncology. ,vol. 8, pp. 1067- 1083 ,(2014) , 10.1016/J.MOLONC.2014.05.004
Nicola J. Clegg, John Wongvipat, James D. Joseph, Chris Tran, Samedy Ouk, Anna Dilhas, Yu Chen, Kate Grillot, Eric D. Bischoff, Ling Cai, Anna Aparicio, Steven Dorow, Vivek Arora, Gang Shao, Jing Qian, Hong Zhao, Guangbin Yang, Chunyan Cao, John Sensintaffar, Teresa Wasielewska, Mark R. Herbert, Celine Bonnefous, Beatrice Darimont, Howard I. Scher, Peter Smith-Jones, Mark Klang, Nicholas D. Smith, Elisa De Stanchina, Nian Wu, Ouathek Ouerfelli, Peter J. Rix, Richard A. Heyman, Michael E. Jung, Charles L. Sawyers, Jeffrey H. Hager, ARN-509: A Novel Antiandrogen for Prostate Cancer Treatment Cancer Research. ,vol. 72, pp. 1494- 1503 ,(2012) , 10.1158/0008-5472.CAN-11-3948