Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean

作者: G.J De Lange , J.J Middelburg , C.H Van der Weijden , G Catalano , G.W Luther

DOI: 10.1016/0304-4203(90)90031-7

关键词:

摘要: At present two brine-filled depressions have been identified in the eastern Mediterranean - The Tyro Basin (33°53′N, 26°02′E) and Bannock (34°20′N, 20°02′E). In both areas, main basin is surrounded by satellite basins that used to or still hypersaline anoxic conditions. brines are thought originate from dissolution of outcropping underlying (Messinian) evaporitic salt layers. The transition normal seawater brine water occurs at a slightly different depth basins; 3383 dbar 3330 Basin. this transition, salinity increases sharply, whereas concentration dissolved oxygen drops rapidly zero across interval only few metres. The Basins almost identical (10 times seawater). However, between differences occur major (and trace) element composition. characterized relatively high Na content, more enriched K, Mg SO4. These related composition serves as source for each these brines. evaporite result depositional ‘stage’ deposits. results late-stage deposit, originates an earlier-stage evaporite. In contrast homogeneous Basin, double-layered observed lower (II) has higher than upper (I) also differ Brine I Ca Sr, Mg, S concentrations ions Scirocco deviate even those II, which indicate degree dolomitization

参考文章(68)
J.S. Snover, A.J. Pasztor, How to treat metal contamination from heavy clear brines Oil & Gas Journal. ,(1983)
P. G. Brewer, C. D. Densmore, R. Munns, R. J. Stanley, Hydrography of the Red Sea Brines Hot Brines and Recent Heavy Metal Deposits in the Red Sea. pp. 138- 147 ,(1969) , 10.1007/978-3-662-28603-6_14
Martin Hartmann, Investigations of Atlantis II Deep Samples Taken by the FS METEOR Hot Brines and Recent Heavy Metal Deposits in the Red Sea. pp. 204- 207 ,(1969) , 10.1007/978-3-662-28603-6_21
Hans G. Trüper, Bacterial Sulfate Reduction in the Red Sea Hot Brines Hot Brines and Recent Heavy Metal Deposits in the Red Sea. pp. 263- 271 ,(1969) , 10.1007/978-3-662-28603-6_26
Paul A. LaRock, Ray D. Lauer, John R. Schwarz, Kathleen K. Watanabe, Denis A. Wiesenburg, Microbial Biomass and Activity Distribution in an Anoxic, Hypersaline Basin Applied and Environmental Microbiology. ,vol. 37, pp. 466- 470 ,(1979) , 10.1128/AEM.37.3.466-470.1979
Timothy Richard Parsons, J. D. H. Strickland, A practical handbook of seawater analysis ,(1968)
M. B. Cita, K. A. Kastens, F. W. McCoy, F. Aghib, A. Cambi, A. Camerlenghi, C. Corselli, E. Erba, M. Giambastiani, T. Herbert, C. Leoni, P. Malinverno, A. Nosetto, E. Parisi, Gypsum precipitation from cold brines in an anoxic basin in the eastern Mediterranean Nature. ,vol. 314, pp. 152- 154 ,(1985) , 10.1038/314152A0
Elizabeth W. Baumann, Determination of pH in concentrated salt solutions Analytica Chimica Acta. ,vol. 64, pp. 284- 288 ,(1973) , 10.1016/S0003-2670(01)82448-X
Lucinda Jacobs, Steven Emerson, Sarah S. Huested, Trace metal geochemistry in the Cariaco Trench Deep Sea Research Part A. Oceanographic Research Papers. ,vol. 34, pp. 965- 981 ,(1987) , 10.1016/0198-0149(87)90048-3
H.G Thode, J Monster, H.B Dunford, Sulphur isotope geochemistry Geochimica et Cosmochimica Acta. ,vol. 25, pp. 159- 174 ,(1961) , 10.1016/0016-7037(61)90074-6