Graph coloring satisfying restraints

作者: Jason I. Brown , David Kelly , J. Schönheim , Robert E. Woodrow

DOI: 10.1016/0012-365X(90)90113-V

关键词:

摘要: Abstract For an integer k ⩾2, a proper k-restraint on graph G is function from the vertex set of to -colors. A amenably k-colorable if, for each nonconstant -restraint r , there -coloring c with ( v )≠ ) . amenable if it -colorable and chromatic number any ≠3, are infinitely many -critical graphs. ⩾ 3, we use construction B. Toft graphs associate finite hypergraph. Some constructions given. We also consider related property—being strongly critical —that satisfied by graphs, including complete amenable, but converse not always true. The Dirac join operation preserves both amenability property. In addition, Hajos applied single edge in two yields graph. However, ⩾5, which copies amenable.

参考文章(7)
Béla Bollobás, Graph Theory: An Introductory Course ,(1979)
B Toft, Color-critical graphs and hypergraphs☆ Journal of Combinatorial Theory, Series B. ,vol. 16, pp. 145- 161 ,(1974) , 10.1016/0095-8956(74)90057-4
Bjarne Toft, On critical subgraphs of colour-critical graphs Discrete Mathematics. ,vol. 7, pp. 377- 392 ,(1974) , 10.1016/0012-365X(74)90045-4
G. A. Dirac, A Theorem of R. L. Brooks and a Conjecture of H. Hadwiger Proceedings of the London Mathematical Society. ,vol. s3-7, pp. 161- 195 ,(1957) , 10.1112/PLMS/S3-7.1.161
M. Stiebitz, Subgraphs of colour-critical graphs Combinatorica. ,vol. 7, pp. 303- 312 ,(1987) , 10.1007/BF02579307
John B. Kelly, L. M. Kelly, Paths and Circuits in Critical Graphs American Journal of Mathematics. ,vol. 76, pp. 786- ,(1954) , 10.2307/2372652
Frank Harary, Graph theory ,(1969)