A study of corrosion behavior of Ni-22Cr-13Mo-3W alloy under hygroscopic salt deposits on hot surface

作者: Sunil Badwe , K.S. Raja , M. Misra

DOI: 10.1016/J.ELECTACTA.2006.03.032

关键词:

摘要: Alloy 22, a nickel base Ni-22Cr-13Mo-3W alloy has an excellent corrosion resistance in oxidizing and reducing environments. Most of the studies on 22 have been conducted using conventional chemical or electrochemical methods. In present investigation, specimen was directly heated instead heating electrolyte, thereby simulating nuclear waste package container temperature profile. Corrosion behavior evaporation conditions water diffusing were evaluated newly devised electrode test (HECT) method simulated acidified (SAW) concentrated (SCW) this method, concentration environment varied with duration. The rate not affected by continuous increase ionic strength SAW (pH 3) environment. Passivation kinetics faster electrolytes. major difference between HECT aging characteristics passive film 22. can be used for evaluating materials construction heat transfer equipments such as evaporators.

参考文章(17)
M. DROGOWSKA, L. BROSSARD, H. ME´NARD, 304 Stainless steel oxidation in sulfate and sulfate + bicarbonate solutions Journal of Applied Electrochemistry. ,vol. 28, pp. 491- 501 ,(1998) , 10.1023/A:1003265127657
Martín A. Rodríguez, Ricardo M. Carranza, Raúl B. Rebak, Influence of Halide Ions and Alloy Microstructure on the Passive and Localized Corrosion Behavior of Alloy 22 Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 36, pp. 1179- 1185 ,(2005) , 10.1007/S11661-005-0210-4
Namal Priyantha, Palitha Jayaweera, Digby D. Macdonald, Adan Sun, An electrochemical impedance study of Alloy 22 in NaCl brine at elevated temperature. I. Corrosion behavior Journal of Electroanalytical Chemistry. ,vol. 572, pp. 409- 419 ,(2004) , 10.1016/J.JELECHEM.2004.06.031
Kenneth J. Evans, Ahmet Yilmaz, S. Daniel Day, Lana L. Wong, John C. Estill, Raúl B. Rebak, Using electrochemical methods to determine alloy 22’s crevice corrosion repassivation potential JOM. ,vol. 57, pp. 56- 61 ,(2005) , 10.1007/S11837-005-0065-6
B. A. Kehler, G. O. Ilevbare, J. R. Scully, Crevice Corrosion Stabilization and Repassivation Behavior of Alloy 625 and Alloy 22 Corrosion. ,vol. 57, pp. 1042- 1065 ,(2001) , 10.5006/1.3281677
T.A. Buscheck, N.D. Rosenberg, J.A. Blink, Y. Sun, J. Gansemer, Analysis of thermohydrologic behavior for above-boiling and below-boiling thermal-operating modes for a repository at Yucca Mountain. Journal of Contaminant Hydrology. ,vol. 62, pp. 441- 457 ,(2003) , 10.1016/S0169-7722(02)00156-0
K. S. Raja, S. A. Namjoshi, D. A. Jones, Corrosion-creep interaction of stainless alloys in acid chloride solutions Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 36, pp. 1107- 1120 ,(2005) , 10.1007/S11661-005-0204-2
A. C. Lloyd, D. W. Shoesmith, N. S. McIntyre, J. J. Noël, Effects of Temperature and Potential on the Passive Corrosion Properties of Alloys C22 and C276 Journal of The Electrochemical Society. ,vol. 150, ,(2003) , 10.1149/1.1554914
K.S. Raja, S.A. Namjoshi, M. Misra, Improved corrosion resistance of Ni–22Cr–13Mo–4W Alloy by surface nanocrystallization Materials Letters. ,vol. 59, pp. 570- 574 ,(2005) , 10.1016/J.MATLET.2004.10.047
Y. -M. Pan, D. S. Dunn, G. A. Cragnolino, Topologically close-packed phase precipitation and thermal stability in alloy 22 Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 36, pp. 1143- 1151 ,(2005) , 10.1007/S11661-005-0207-Z