A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching

作者: Alexander M. Bronstein , Michael M. Bronstein , Ron Kimmel , Mona Mahmoudi , Guillermo Sapiro

DOI: 10.1007/S11263-009-0301-6

关键词:

摘要: In this paper, the problem of non-rigid shape recognition is studied from perspective metric geometry. particular, we explore applicability diffusion distances within Gromov-Hausdorff framework. While traditionally used geodesic distance exploits shortest path between points on surface, averages all paths connecting points. The constitutes an intrinsic which robust, in to topological changes. Such changes form shortcuts, holes, and missing data may be a result natural deformations as well acquisition representation noise due inaccurate surface construction. presentation proposed framework complemented with examples demonstrating that addition relatively low complexity involved computation points, its matching performances favorably compare classical presence shapes.

参考文章(73)
Ofir Weber, Yohai S. Devir, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, Parallel algorithms for approximation of distance maps on parametric surfaces ACM Transactions on Graphics. ,vol. 27, pp. 1- 16 ,(2008) , 10.1145/1409625.1409626
Zoë Wood, Hugues Hoppe, Mathieu Desbrun, Peter Schröder, Removing excess topology from isosurfaces ACM Transactions on Graphics. ,vol. 23, pp. 190- 208 ,(2004) , 10.1145/990002.990007
Ulrike von Luxburg, Jean-Yves Audibert, Matthias Hein, Graph Laplacians and their Convergence on Random Neighborhood Graphs Journal of Machine Learning Research. ,vol. 8, pp. 1325- 1370 ,(2007) , 10.5555/1314498.1314544
Dan Raviv, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, Symmetries of non-rigid shapes international conference on computer vision. pp. 1- 7 ,(2007) , 10.1109/ICCV.2007.4409181
E.L. Schwartz, A. Shaw, E. Wolfson, A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 11, pp. 1005- 1008 ,(1989) , 10.1109/34.35506
Haibin Ling, D.W. Jacobs, Using the inner-distance for classification of articulated shapes computer vision and pattern recognition. ,vol. 2, pp. 719- 726 ,(2005) , 10.1109/CVPR.2005.362
D. Knossow, F. Cuzzolin, R. Horaud, D. Mateus, E. Boyer, Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration computer vision and pattern recognition. pp. 1- 8 ,(2008) , 10.1109/CVPR.2008.4587538
Maks Ovsjanikov, Jian Sun, Leonidas Guibas, Global intrinsic symmetries of shapes symposium on geometry processing. ,vol. 27, pp. 1341- 1348 ,(2008) , 10.1111/J.1467-8659.2008.01273.X
A. Elad, R. Kimmel, On bending invariant signatures for surfaces IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 25, pp. 1285- 1295 ,(2003) , 10.1109/TPAMI.2003.1233902
Boris A. Springborn, Alexander I. Bobenko, A Discrete Laplace–Beltrami Operator for Simplicial Surfaces Discrete and Computational Geometry. ,vol. 38, pp. 740- 756 ,(2007) , 10.1007/S00454-007-9006-1