Purity distribution for generalized random Bures mixed states

作者: Gaëtan Borot , Céline Nadal

DOI: 10.1088/1751-8113/45/7/075209

关键词:

摘要: We compute the distribution of purity for random density matrices (i.e.random mixed states) in a large quantum system, distributed according to Bures measure. The full is computed using mapping matrix theory and then Coulomb gas method. find three regimes that correspond two phase transitions associated gas. first transition characterized by an explosion third derivative on left point. second order, it detachement single charge A key remark this paper states are closely related O(n) model n=1. This actually led us study "generalized states" keeping $n$ general instead specializing

参考文章(49)
Peter J Forrester, Log-Gases and Random Matrices ,(2010)
R. Balian, Random matrices and information theory Il Nuovo Cimento B. ,vol. 57, pp. 183- 193 ,(1968) , 10.1007/BF02710326
Guillaume Aubrun, Stanisław J. Szarek, Tensor products of convex sets and the volume of separable states on N qudits Physical Review A. ,vol. 73, pp. 022109- ,(2006) , 10.1103/PHYSREVA.73.022109
Leonid Gurvits, Howard Barnum, Largest separable balls around the maximally mixed bipartite quantum state Physical Review A. ,vol. 66, pp. 062311- ,(2002) , 10.1103/PHYSREVA.66.062311
Richard Jozsa, Fidelity for Mixed Quantum States Journal of Modern Optics. ,vol. 41, pp. 2315- 2323 ,(1994) , 10.1080/09500349414552171
Samuel L. Braunstein, GEOMETRY OF QUANTUM INFERENCE Physics Letters A. ,vol. 219, pp. 169- 174 ,(1996) , 10.1016/0375-9601(96)00365-9
Don N. Page, Average entropy of a subsystem Physical Review Letters. ,vol. 71, pp. 1291- 1294 ,(1993) , 10.1103/PHYSREVLETT.71.1291
David S. Dean, Satya N. Majumdar, Extreme value statistics of eigenvalues of Gaussian random matrices Physical Review E. ,vol. 77, pp. 041108- ,(2008) , 10.1103/PHYSREVE.77.041108
I. K. KOSTOV, O($n$) Vector Model on a Planar Random Lattice: Spectrum of Anomalous Dimensions Modern Physics Letters A. ,vol. 04, pp. 217- 226 ,(1989) , 10.1142/S0217732389000289