Nonlinear Waves in a Bi-Layer and Coupled Klein-Gordon Equations

作者: Karima R. Khusnutdinova

DOI: 10.1007/1-4020-2604-8_50

关键词:

摘要: A system of coupled Klein-Gordon equations is suggested to model one-dimensional nonlinear wave processes in a bi-layer. The type coupling depends on the interface and constitutes an arbitrary element Lie group classification problem, which solved for these equations. results are used find conservation laws particular invariant solutions.

参考文章(14)
Gennadiĭ Petrovich Cherepanov, Fracture : a topical encyclopedia of current knowledge Krieger Pub. Co.. ,(1998)
E. Kamke, Differentialgleichungen : Lösungsmethoden und Lösungen Published in <b>1959</b> in New York NY) by Chelsea. ,(1977) , 10.1007/978-3-663-05925-7
J. C. Eilbeck, J. D. Gibbon, R. K. Dodd, H. C. Morris, Solitons and Nonlinear Wave Equations ,(1982)
S. Yomosa, Solitary excitations in deoxyribonuclei acid (DNA) double helices Physical Review A. ,vol. 30, pp. 474- 480 ,(1983) , 10.1103/PHYSREVA.30.474
Oleg M. Braun, Yuri S. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model Physics Reports. ,vol. 306, pp. 1- 108 ,(1998) , 10.1016/S0370-1573(98)00029-5
I.Sh. Akhatov, V.A. Baikov, K.R. Khusnutdinova, Non-linear dynamics of coupled chains of particles Journal of Applied Mathematics and Mechanics. ,vol. 59, pp. 353- 361 ,(1995) , 10.1016/0021-8928(95)00042-N
Willard Miller, L. V. Ovsiannikov, Group analysis of differential equations ,(1982)
J Frenkel, T Kontorova, On the theory of plastic deformation and twinning. II. Zh. Eksp. Teor. Fiz.. ,vol. 8, pp. 1340- 1348 ,(1938)