Application of LSTM approach for modelling stress–strain behaviour of soil

作者: Ning Zhang , Shui-Long Shen , Annan Zhou , Yin-Fu Jin

DOI: 10.1016/J.ASOC.2020.106959

关键词:

摘要: … to model the stress–strain behaviour using … model predicted the stress–strain behaviours of soils having different mechanical parameters with high precision. In contrast, the prediction …

参考文章(48)
X Wu, J Ghaboussi, J H Garrett, KNOWLEDGE-BASED MODELLING OF MATERIAL BEHAVIOUR WITH NEURAL NETWORKS JOURNAL OF ENGINEERING MECHANICS-ASCE (JOURNAL OF THE ENGINEERING MECHANICS DIVISION). ,vol. 117, pp. 132- 153 ,(1991)
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors Nature. ,vol. 323, pp. 696- 699 ,(1988) , 10.1038/323533A0
Françoise Beaufays, Andrew W. Senior, Hasim Sak, Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition arXiv: Neural and Evolutionary Computing. ,(2014)
James M. Duncan, Chin-Yung Chang, Nonlinear Analysis of Stress and Strain in Soils Journal of the Soil Mechanics and Foundations Division. ,vol. 96, pp. 1629- 1653 ,(1970) , 10.1061/JSFEAQ.0001458
Kenneth L. Lee, H. Bolton Seed, Drained Strength Characteristics of Sands Journal of the Soil Mechanics and Foundations Division. ,vol. 93, pp. 117- 141 ,(1967) , 10.1061/JSFEAQ.0001048
Klaus Greff, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink, Jurgen Schmidhuber, LSTM: A Search Space Odyssey IEEE Transactions on Neural Networks. ,vol. 28, pp. 2222- 2232 ,(2017) , 10.1109/TNNLS.2016.2582924
Dayakar Penumadu, Rongda Zhao, Triaxial compression behavior of sand and gravel using artificial neural networks (ANN) Computers and Geotechnics. ,vol. 24, pp. 207- 230 ,(1999) , 10.1016/S0266-352X(99)00002-6
Iyad Alkroosh, Hamid Nikraz, Predicting axial capacity of driven piles in cohesive soils using intelligent computing Engineering Applications of Artificial Intelligence. ,vol. 25, pp. 618- 627 ,(2012) , 10.1016/J.ENGAPPAI.2011.08.009
Hermann Ney, Patrick Doetsch, Michal Kozielski, Fast and Robust Training of Recurrent Neural Networks for Offline Handwriting Recognition international conference on frontiers in handwriting recognition. pp. 279- 284 ,(2014) , 10.1109/ICFHR.2014.54
Yacoub M. Najjar, Chune Huang, Simulating the stress–strain behavior of Georgia kaolin via recurrent neuronet approach Computers and Geotechnics. ,vol. 34, pp. 346- 361 ,(2007) , 10.1016/J.COMPGEO.2007.06.006