Calogero model with Yukawa-like interaction

作者: Mohammed Kessabi , El Hassan Saidi , Hanane Sebbata

DOI: 10.1016/J.PHYSLETB.2005.10.084

关键词:

摘要: Abstract We study an extension of one-dimensional Calogero model involving strongly coupled and electrically charged particles. Besides term g 2 x , there is extra factor described by a Yukawa-like coupling modeling short distance interactions. Mimicking analysis using developments in formal series the wave function Ψ ( ) factorized as ɛ Φ with − 1 = we develop technique to approach spectrum generalized system show that information on full captured ″ at singular point 0 potential. Convergence ∫ d | requires > shown be sensitive zero mode .

参考文章(27)
Marijan Mileković, Stjepan Meljanac, Velimir Bardek, Larisa Jonke, Calogero model, deformed oscillators and the collapse Physics Letters B. ,vol. 531, pp. 311- 315 ,(2002) , 10.1016/S0370-2693(02)01481-8
Alexios P. Polychronakos, Exchange operator formalism for integrable systems of particles Physical Review Letters. ,vol. 69, pp. 703- 705 ,(1992) , 10.1103/PHYSREVLETT.69.703
E. H. SAIDI, M. B. SEDRA, ON N = 4 INTEGRABLE MODELS International Journal of Modern Physics A. ,vol. 09, pp. 891- 913 ,(1994) , 10.1142/S0217751X94000406
Helmut Kröger, Yongyao Li, Xiangqian Luo, Bound states and critical behavior of the Yukawa potential Science China-physics Mechanics & Astronomy. ,vol. 49, pp. 60- 71 ,(2006) , 10.1007/S11433-004-0020-5
F. Calogero, Ground State of a One‐Dimensional N‐Body System Journal of Mathematical Physics. ,vol. 10, pp. 2197- 2200 ,(1969) , 10.1063/1.1664821
B. D. Simons, P. A. Lee, B. L. Altshuler, Exact description of spectral correlators by a quantum one-dimensional model with inverse-square interaction. Physical Review Letters. ,vol. 70, pp. 4122- 4125 ,(1993) , 10.1103/PHYSREVLETT.70.4122
Bill Sutherland, Quantum Many‐Body Problem in One Dimension: Ground State Journal of Mathematical Physics. ,vol. 12, pp. 246- 250 ,(1971) , 10.1063/1.1665584
F. Calogero, A Solvable Many-Body Problem in the Plane Journal of Nonlinear Mathematical Physics. ,vol. 5, pp. 289- 293 ,(1998) , 10.2991/JNMP.1998.5.3.4
M.A. Olshanetsky, A.M. Perelomov, Classical integrable finite-dimensional systems related to Lie algebras Physics Reports. ,vol. 71, pp. 313- 400 ,(1981) , 10.1016/0370-1573(81)90023-5