Minimal usco and minimal cusco maps and compactness

作者: Ľubica Holá , Dušan Holý

DOI: 10.1016/J.JMAA.2016.03.007

关键词:

摘要: Abstract We prove a nice generalization of the Arzela–Ascoli Theorem from continuous functions to minimal usco/cusco maps into metric spaces. Let X be locally compact space, ( Y , d ) K space all nonempty subsets and MU usco Y. The family E ⊆ is in equipped with topology τ UC uniform convergence on sets if only closed pointwise bounded densely equicontinuous. same result holds also for MC cusco Banach

参考文章(29)
S. T. Hammer, R. A. McCoy, Spaces of Densely Continuous Forms Set-valued Analysis. ,vol. 5, pp. 247- 266 ,(1997) , 10.1023/A:1008666504767
L'. Holá, Spaces of Densely Continuous Forms, USCO and Minimal USCO Maps Set-valued Analysis. ,vol. 11, pp. 133- 151 ,(2003) , 10.1023/A:1022982924962
Jonathan M. Borwein, Qiji J. Zhu, Multifunctional and functional analytic techniques in nonsmooth analysis Springer Netherlands. pp. 61- 157 ,(1999) , 10.1007/978-94-011-4560-2_2
Jonathan M. Borwein, Qiji J. Zhu, Techniques of variational analysis ,(2005)
Warren B. Moors, Sivajah Somasundaram, A Gâteaux differentiability space that is not weak Asplund Proceedings of the American Mathematical Society. ,vol. 134, pp. 2745- 2754 ,(2006) , 10.1090/S0002-9939-06-08402-4
Jiling Cao, Warren B. Moors, QUASICONTINUOUS SELECTIONS OF UPPER CONTINUOUS SET-VALUED MAPPINGS Real analysis exchange. ,vol. 31, pp. 63- 72 ,(2006) , 10.14321/REALANALEXCH.31.1.0063
E. F. Collingwood, A. J. Lohwater, The Theory of Cluster Sets ,(1966)
Milan Matejdes, Minimality of Multifunctions Real analysis exchange. ,vol. 32, pp. 519- 526 ,(2007) , 10.14321/REALANALEXCH.32.2.0519