Coercivity, essential norms, and the Galerkin method for second-kind integral equations on polyhedral and Lipschitz domains.

作者: Simon N. Chandler-Wilde , Euan A. Spence

DOI:

关键词:

摘要: It is well known that, with a particular choice of norm, the classical double-layer potential operator $D$ has essential norm $ 0$, examples Lipschitz polyhedra for which $\geq C$ and $\lambda I+D$ not compact perturbation coercive any real or complex $\lambda$ $|\lambda|\leq C$. Finally, we resolve negatively related open question in convergence theory collocation methods.

参考文章(76)
Christoph Schwab, Stefan A. Sauter, Boundary Element Methods ,(2010)
Vladimir Maz'ya, Representations and estimates for inverse operators in the harmonic potential theory for polyhedra Rendiconti Lincei - Matematica e Applicazioni. ,vol. 23, pp. 229- 258 ,(2012) , 10.4171/RLM/626
Steve Hofmann, On singular integrals of Calderón-type in Rn and BMO Revista Matematica Iberoamericana. ,vol. 10, pp. 467- 505 ,(1994) , 10.4171/RMI/159
E. Brian Davies, Linear Operators and their Spectra ,(2007)
P. D. Hislop, I. M. Sigal, Introduction to Spectral Theory Springer New York. ,(1996) , 10.1007/978-1-4612-0741-2
Weng Cho Chew, M. L. Hastriter, J. M. Song, B. Hu, T. J. Cui, S. Velamparambil, Review of large scale computing in electromagnetics with fast integral equation solvers Cmes-computer Modeling in Engineering & Sciences. ,vol. 5, pp. 361- 372 ,(2004) , 10.3970/CMES.2004.005.361
F. F. Bonsall, J. Duncan, Numerical Ranges II ,(1973)
Ronald R. Coifman, Yves Meyer, Wavelets: Calderón-Zygmund and Multilinear Operators ,(1997)