Identifying important features for intrusion detection using support vector machines and neural networks

作者: A.H. Sung , S. Mukkamala

DOI: 10.1109/SAINT.2003.1183050

关键词:

摘要: … found to be superior to neural networks in many important respects of intrusion detection [10,11,12], so we will illustrate feature ranking using SVMs and neural networks. We performed …

参考文章(15)
Guadalupe I. Janoski, Srinivas Mukkamala, Andrew H. Sung, Monitoring Information System Security ,(2001)
Thorsten Joachims, Estimating the Generalization Performance of an SVM Efficiently international conference on machine learning. pp. 431- 438 ,(2000) , 10.17877/DE290R-5102
Thorsten Joachims, Making large scale SVM learning practical Technical reports. ,(1999) , 10.17877/DE290R-14262
Aaron Schwartzbard, Michael Schatz, Anup K. Ghosh, Learning program behavior profiles for intrusion detection ID'99 Proceedings of the 1st conference on Workshop on Intrusion Detection and Network Monitoring - Volume 1. pp. 6- 6 ,(1999)
H. Debar, B. Dorizzi, An application of a recurrent network to an intrusion detection system international joint conference on neural network. ,vol. 2, pp. 478- 483 ,(1992) , 10.1109/IJCNN.1992.226942
A.H. Sung, Ranking importance of input parameters of neural networks Expert Systems with Applications. ,vol. 15, pp. 405- 411 ,(1998) , 10.1016/S0957-4174(98)00041-4
Jianxiong Luo, Susan M. Bridges, Mining fuzzy association rules and fuzzy frequency episodes for intrusion detection International Journal of Intelligent Systems. ,vol. 15, pp. 687- 703 ,(2000) , 10.1002/1098-111X(200008)15:8<687::AID-INT1>3.0.CO;2-X
Sandeep Kumar, Eugene H Spafford, None, An Application of Pattern Matching in Intrusion Detection ,(1994)
S. Mukkamala, G. Janoski, A. Sung, Intrusion detection using neural networks and support vector machines international joint conference on neural network. ,vol. 2, pp. 1702- 1707 ,(2002) , 10.1109/IJCNN.2002.1007774