Consensus Clustering in Gene Expression

作者: Paola Galdi , Francesco Napolitano , Roberto Tagliaferri

DOI: 10.1007/978-3-319-24462-4_5

关键词:

摘要: In data analysis, clustering is the process of finding groups in unlabelled according to similarities among them such a way that items belonging same group are more similar between each other than different groups. Consensus methodology for combining solutions from set new clustering, order obtain accurate and stable solution. this work we compared consensus approaches combination with algorithms ran several experiments on gene expression sets. We show techniques lead an improvement accuracy give evidence stability obtained these methods.

参考文章(17)
Stefano Monti, Pablo Tamayo, Jill Mesirov, Todd Golub, Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data Machine Learning. ,vol. 52, pp. 91- 118 ,(2003) , 10.1023/A:1023949509487
Ida Bifulco, Carmine Fedullo, Francesco Napolitano, Giancarlo Raiconi, Roberto Tagliaferri, Robust Clustering by Aggregation and Intersection Methods international conference on knowledge based and intelligent information and engineering systems. ,vol. 5179, pp. 732- 739 ,(2008) , 10.1007/978-3-540-85567-5_91
Natthakan Iam-on, Simon Garrett, LinkCluE: A MATLAB Package for Link-Based Cluster Ensembles Journal of Statistical Software. ,vol. 36, pp. 1- 36 ,(2010) , 10.18637/JSS.V036.I09
Glenn W. Milligan, Martha C. Cooper, An examination of procedures for determining the number of clusters in a data set Psychometrika. ,vol. 50, pp. 159- 179 ,(1985) , 10.1007/BF02294245
SANDRO VEGA-PONS, JOSÉ RUIZ-SHULCLOPER, A SURVEY OF CLUSTERING ENSEMBLE ALGORITHMS International Journal of Pattern Recognition and Artificial Intelligence. ,vol. 25, pp. 337- 372 ,(2011) , 10.1142/S0218001411008683
Ella Bingham, Heikki Mannila, Random projection in dimensionality reduction: applications to image and text data knowledge discovery and data mining. pp. 245- 250 ,(2001) , 10.1145/502512.502546
Angela Serra, Michele Fratello, Vittorio Fortino, Giancarlo Raiconi, Roberto Tagliaferri, Dario Greco, MVDA: a multi-view genomic data integration methodology BMC Bioinformatics. ,vol. 16, pp. 261- 261 ,(2015) , 10.1186/S12859-015-0680-3
David H. Wolpert, The lack of a priori distinctions between learning algorithms Neural Computation. ,vol. 8, pp. 1341- 1390 ,(1996) , 10.1162/NECO.1996.8.7.1341
Xiangliang Zhang, Wei Wang, Kjetil Norvag, Michele Sebag, K-AP: Generating Specified K Clusters by Efficient Affinity Propagation international conference on data mining. pp. 1187- 1192 ,(2010) , 10.1109/ICDM.2010.107
Francesca M. Buffa, Carme Camps, Laura Winchester, Cameron E. Snell, Harriet E. Gee, Helen Sheldon, Marian Taylor, Adrian L. Harris, Jiannis Ragoussis, microRNA-Associated Progression Pathways and Potential Therapeutic Targets Identified by Integrated mRNA and microRNA Expression Profiling in Breast Cancer Cancer Research. ,vol. 71, pp. 5635- 5645 ,(2011) , 10.1158/0008-5472.CAN-11-0489