Robust Methods in Analysis of Multivariate Food Chemistry Data

作者: Ivana Stanimirova , Michał Daszykowski , Beata Walczak

DOI: 10.1016/B978-0-444-59528-7.00008-9

关键词:

摘要: Abstract In this chapter, foundations of robust statistics are introduced, including classic and estimators as well their statistical properties (breakdown point, efficiency, influence function equivariance property). Then, some methods that have gained popularity in recent years presented. The major benefit using stems from the fact they help providing stable estimates for data containing outliers (food samples considerably different compositions comparison with majority samples). Regardless reasons uniqueness, strongly affect interpretation when any method least-squares cost is used. Therefore, more suitable to explore model natural expected. addition exploration modeling multivariate data, processing incomplete contain also discussed.

参考文章(66)
M. Daszykowski, K. Kaczmarek, Y. Vander Heyden, B. Walczak, Robust statistics in data analysis — A review: Basic concepts Chemometrics and Intelligent Laboratory Systems. ,vol. 85, pp. 203- 219 ,(2007) , 10.1016/J.CHEMOLAB.2006.06.016
N. A. Campbell, Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation Applied Statistics. ,vol. 29, pp. 231- 237 ,(1980) , 10.2307/2346896
Dennis R. Helsel, Nondetects and data analysis : statistics for censored environmental data Nondetects and data analysis. Statistics for censored environmental data.. ,(2005)
Erkki Oja, Aapo Hyvarinen, Juha Karhunen, Independent Component Analysis ,(2001)
David E. Tyler, Kay S. Tatsuoka, On the uniqueness of S-functionals and M-functionals under nonelliptical distributions Annals of Statistics. ,vol. 28, pp. 1219- 1243 ,(2000) , 10.1214/AOS/1015956714
Jacqueline S. Galpin, Douglas M. Hawkins, Methods of L 1 -estimation of a covariance matrix Computational Statistics & Data Analysis. ,vol. 5, pp. 305- 319 ,(1987) , 10.1016/0167-9473(87)90054-5
Sven Serneels, Christophe Croux, Peter Filzmoser, Pierre J. Van Espen, Partial robust M-regression Chemometrics and Intelligent Laboratory Systems. ,vol. 79, pp. 55- 64 ,(2005) , 10.1016/J.CHEMOLAB.2005.04.007
K. Vanden Branden, M. Hubert, Robust classification in high dimensions based on the SIMCA Method Chemometrics and Intelligent Laboratory Systems. ,vol. 79, pp. 10- 21 ,(2005) , 10.1016/J.CHEMOLAB.2005.03.002