Application of the Constructive Mikado-Algorithm on Remotely Sensed Data

作者: C. Cruse , S. Leppelmann , A. Burwick , M. Bode

DOI: 10.1007/978-3-642-59041-2_20

关键词:

摘要: Finding an optimal architecture for a neural network, i.e. number and size of layers, is open problem. With the Mikado-algorithm we present new method to construct network in course learning. two examples, classification structure detection from remotely sensed data, demonstrate capabilities Mikado-algorithm. This algorithm provides good generalisation presence mixed pixels, delivering small networks high-dimensional problems way interpreting ability.

参考文章(6)
Martin Neschen, Hierarchical Binary Vector Quantisation Classifiers for Handwritten Character Recognition Mustererkennung 1995, 17. DAGM-Symposium. pp. 419- 427 ,(1995) , 10.1007/978-3-642-79980-8_50
Thomas Martin Lillesand, Remote sensing and image interpretation ,(1979)
M Mezard, Jean-P Nadal, Learning in feedforward layered networks: the tiling algorithm Journal of Physics A. ,vol. 22, pp. 2191- 2203 ,(1989) , 10.1088/0305-4470/22/12/019
Christian Drewniok, Karl Rohr, High-Precision Localization of Circular Landmarks in Aerial Images Mustererkennung 1995, 17. DAGM-Symposium. pp. 594- 601 ,(1995) , 10.1007/978-3-642-79980-8_70
John Wright, Thomas M. Lillesand, Ralph W. Kiefer, Remote Sensing and Image Interpretation The Geographical Journal. ,vol. 146, pp. 448- ,(1980) , 10.2307/634969