Mammalian mitochondrial translation - revealing consequences of divergent evolution

作者: Rawaa A. Z. Al-Faresi , Robert. N. Lightowlers , Zofia M. A. Chrzanowska-Lightowlers

DOI: 10.1042/BST20190265

关键词:

摘要: Mitochondria are ubiquitous organelles present in the cytoplasm of all nucleated eukaryotic cells. These described as arising from a common ancestor but comparison numerous aspects mitochondria between different organisms provides remarkable examples divergent evolution. In humans, these dual genetic origin, comprising ∼1500 nuclear-encoded proteins and thirteen that encoded by mitochondrial genome. Of various functions perform, it is only oxidative phosphorylation, which ATP source chemical energy, dependent on synthesis mitochondrially proteins. A prerequisite for this process translation mitoribosomes. The recent revolution cryo-electron microscopy has generated high-resolution mitoribosome structures undoubtedly revealed some most distinctive molecular mitoribosomes organisms. However, we still lack complete understanding mechanistic many factors involved post-transcriptional gene expression mitochondria. This review reflects current knowledge illustrates striking differences have been identified range

参考文章(61)
Marina V Rodnina, Wolfgang Wintermeyer, Rachel Green, None, Ribosomes: Structure, Function, and Dynamics. Springer. ,(2011)
Zhiqiang Wu, Jocelyn M. Cuthbert, Douglas R. Taylor, Daniel B. Sloan, The massive mitochondrial genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes Proceedings of the National Academy of Sciences of the United States of America. ,vol. 112, pp. 10185- 10191 ,(2015) , 10.1073/PNAS.1421397112
Basil J. Greber, Daniel Boehringer, Marc Leibundgut, Philipp Bieri, Alexander Leitner, Nikolaus Schmitz, Ruedi Aebersold, Nenad Ban, The complete structure of the large subunit of the mammalian mitochondrial ribosome Nature. ,vol. 515, pp. 283- 286 ,(2014) , 10.1038/NATURE13895
Emine C. Koc, Md. Emdadul Haque, Linda L. Spremulli, Current Views of the Structure of the Mammalian Mitochondrial Ribosome Israel Journal of Chemistry. ,vol. 50, pp. 45- 59 ,(2010) , 10.1002/IJCH.201000002
Julio Montoya, Deanna Ojala, Giuseppe Attardi, Distinctive features of the 5'-terminal sequences of the human mitochondrial mRNAs Nature. ,vol. 290, pp. 465- 470 ,(1981) , 10.1038/290465A0
A. Brown, A. Amunts, X.-c. Bai, Y. Sugimoto, P. C. Edwards, G. Murshudov, S. H. W. Scheres, V. Ramakrishnan, Structure of the large ribosomal subunit from human mitochondria Science. ,vol. 346, pp. 718- 722 ,(2014) , 10.1126/SCIENCE.1258026
Alexey Amunts, Alan Brown, Jaan Toots, Sjors H. W. Scheres, V. Ramakrishnan, The structure of the human mitochondrial ribosome Science. ,vol. 348, pp. 95- 98 ,(2015) , 10.1126/SCIENCE.AAA1193
Otto G. Berg, C. G. Kurland, Why Mitochondrial Genes are Most Often Found in Nuclei Molecular Biology and Evolution. ,vol. 17, pp. 951- 961 ,(2000) , 10.1093/OXFORDJOURNALS.MOLBEV.A026376
Richard J. Temperley, Mateusz Wydro, Robert N. Lightowlers, Zofia M. Chrzanowska-Lightowlers, Human mitochondrial mRNAs—like members of all families, similar but different Biochimica et Biophysica Acta (BBA) - Bioenergetics. ,vol. 1797, pp. 1081- 1085 ,(2010) , 10.1016/J.BBABIO.2010.02.036
Mateusz Wydro, Agnieszka Bobrowicz, Richard J. Temperley, Robert N. Lightowlers, Zofia M. Chrzanowska-Lightowlers, Targeting of the cytosolic poly(A) binding protein PABPC1 to mitochondria causes mitochondrial translation inhibition Nucleic Acids Research. ,vol. 38, pp. 3732- 3742 ,(2010) , 10.1093/NAR/GKQ068