Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs)

作者: Ruijie Liu , Jeffery D. Molkentin

DOI: 10.1016/J.YJMCC.2016.08.018

关键词:

摘要: Mitogen-activated protein kinases (MAPKs) play a critical role in regulating cardiac hypertrophy and remodeling response to increased workload or pathological insults. The spatiotemporal activities inactivation of MAPKs are tightly controlled by family dual-specificity MAPK phosphatases (DUSPs). Over the past 2 decades, we others have determined for selected DUSP members controlling activity heart ensuing effects on ventricular growth remodeling. More specifically, studies from mice deficient individual Dusp genes as well heart-specific inducible transgene-mediated overexpression implicated select DUSPs essential signaling effectors that function dynamically level, subcellular temporal extracellular signal-regulated (ERKs), c-Jun N-terminal (JNKs) p38 MAPKs. This review summarizes recent literature physiological roles MAPK-specific effect

参考文章(92)
Bravo R, Lira Sa, Carrasco D, Ryan C, Dorfman K, Gruda M, Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene. ,vol. 13, pp. 925- 931 ,(1996)
Sun Young Kim, Yong-Mahn Han, Mihee Oh, Won-Kon Kim, Kyoung-Jin Oh, Sang Chul Lee, Kwang-Hee Bae, Baek-Soo Han, DUSP4 Regulates Neuronal Differentiation and Calcium Homeostasis by Modulating ERK1/2 Phosphorylation Stem Cells and Development. ,vol. 24, pp. 686- 700 ,(2015) , 10.1089/SCD.2014.0434
Takuji Tanoue, Takuya Yamamoto, Ryota Maeda, Eisuke Nishida, A Novel MAPK Phosphatase MKP-7 Acts Preferentially on JNK/SAPK and p38α and β MAPKs Journal of Biological Chemistry. ,vol. 276, pp. 26629- 26639 ,(2001) , 10.1074/JBC.M101981200
Yongliang Zhang, Kalyan C. Nallaparaju, Xin Liu, Huipeng Jiao, Joseph M. Reynolds, Zhi-Xin Wang, Chen Dong, MAPK Phosphatase 7 Regulates T Cell Differentiation via Inhibiting ERK-Mediated IL-2 Expression Journal of Immunology. ,vol. 194, pp. 3088- 3095 ,(2015) , 10.4049/JIMMUNOL.1402638
Mashael Al-Mutairi, Sameer Al-Harthi, Laurence Cadalbert, Robin Plevin, Over‐expression of mitogen‐activated protein kinase phosphatase‐2 enhances adhesion molecule expression and protects against apoptosis in human endothelial cells British Journal of Pharmacology. ,vol. 161, pp. 782- 798 ,(2010) , 10.1111/J.1476-5381.2010.00952.X
Tomohiro Yokota, Yibin Wang, p38 MAP kinases in the heart. Gene. ,vol. 575, pp. 369- 376 ,(2016) , 10.1016/J.GENE.2015.09.030
Seyedmehdi Shojaee, Rebecca Caeser, Maike Buchner, Eugene Park, Srividya Swaminathan, Christian Hurtz, Huimin Geng, Lai N. Chan, Lars Klemm, Wolf-Karsten Hofmann, Yi Hua Qiu, Nianxiang Zhang, Kevin R. Coombes, Elisabeth Paietta, Jeffery Molkentin, H. Phillip Koeffler, Cheryl L. Willman, Stephen P. Hunger, Ari Melnick, Steven M. Kornblau, Markus Müschen, Erk Negative Feedback Control Enables Pre-B Cell Transformation and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia Cancer Cell. ,vol. 28, pp. 114- 128 ,(2015) , 10.1016/J.CCELL.2015.05.008
Christopher J. Caunt, Stephen M. Keyse, Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS Journal. ,vol. 280, pp. 489- 504 ,(2013) , 10.1111/J.1742-4658.2012.08716.X
Dario R. Alessi, Nestor Gomez, Greg Moorhead, Tom Lewis, Stephen M. Keyse, Philip Cohen, Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines Current Biology. ,vol. 5, pp. 283- 295 ,(1995) , 10.1016/S0960-9822(95)00059-5