Structural and functional role of disulphide bonds and substrate binding residues of the human beta-galactoside alpha-2,3-sialyltransferase 1 (hST3Gal1)

作者: Maria Elena Ortiz-Soto , Sabine Reising , Andreas Schlosser , Jürgen Seibel

DOI: 10.1038/S41598-019-54384-8

关键词:

摘要: Overexpression of hST3Gal1 leads to hypersialylation cell-surface glycoconjugates, a cancer-associated condition that promotes cell growth, migration and invasion. Upregulation this enzyme in ovarian cancer is linked progression metastasis, contributing also chemotherapy resistance. Strategies for preventing metastasis include the inhibition hST3Gal1, which demands structure-based studies on its strict regioselectivity substrate/donor preference. Herein we describe contribution various residues constituting donor CMP-Neu5Ac acceptor Galβ1-3GalNAc-R binding sites catalysis. Removal hydrogen bonds and/or stacking interactions among substrates Y191, Y230, N147, S148 N170 affected enzyme’s activity different extent, revealing fine control needed an optimal catalytic performance. To gain further understanding correlation structure, stability, vitro role disulphide was analysed. As expected, disruption Glycosyltransferase family 29 (GT29) invariant bond C142-C281, as well ST3Gal1 subfamily conserved C61-C139 inactivates enzyme. While C59-C64 not essential function, absence reduces (kcat) about 67 72%, respectively, diminishes melting temperature (Tm) by 7 °C.

参考文章(47)
J C Paulson, K J Colley, Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. Journal of Biological Chemistry. ,vol. 264, pp. 17615- 17618 ,(1989) , 10.1016/S0021-9258(19)84610-0
Paul R. Crocker, James C. Paulson, Ajit Varki, Siglecs and their roles in the immune system Nature Reviews Immunology. ,vol. 7, pp. 255- 266 ,(2007) , 10.1038/NRI2056
Y. Hirano, T. Suzuki, T. Matsumoto, Y. Ishihara, Y. Takaki, M. Kono, N. Dohmae, S. Tsuji, Disulphide linkage in mouse ST6Gal-I: determination of linkage positions and mutant analysis Journal of Biochemistry. ,vol. 151, pp. 197- 203 ,(2012) , 10.1093/JB/MVR133
Yan-Yang Zhao, Motoko Takahashi, Jian-Guo Gu, Eiji Miyoshi, Akio Matsumoto, Shinobu Kitazume, Naoyuki Taniguchi, Functional roles of N-glycans in cell signaling and cell adhesion in cancer Cancer Science. ,vol. 99, pp. 1304- 1310 ,(2008) , 10.1111/J.1349-7006.2008.00839.X
Yanhong Li, Xi Chen, Sialic acid metabolism and sialyltransferases: natural functions and applications Applied Microbiology and Biotechnology. ,vol. 94, pp. 887- 905 ,(2012) , 10.1007/S00253-012-4040-1
Bernd Kuhn, Jörg Benz, Michael Greif, Alfred M. Engel, Harald Sobek, Markus G. Rudolph, The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans Acta Crystallographica Section D-biological Crystallography. ,vol. 69, pp. 1826- 1838 ,(2013) , 10.1107/S0907444913015412
Ajit Varki, Sialic acids in human health and disease Trends in Molecular Medicine. ,vol. 14, pp. 351- 360 ,(2008) , 10.1016/J.MOLMED.2008.06.002
Robert Kourist, Helge Jochens, Sebastian Bartsch, Remko Kuipers, Santosh Kumar Padhi, Markus Gall, Dominique Böttcher, Henk-Jan Joosten, Uwe T. Bornscheuer, The alpha/beta-hydrolase fold 3DM database (ABHDB) as a tool for protein engineering ChemBioChem. ,vol. 11, pp. 1635- 1643 ,(2010) , 10.1002/CBIC.201000213
Jamey D. Marth, Prabhjit K. Grewal, Mammalian glycosylation in immunity. Nature Reviews Immunology. ,vol. 8, pp. 874- 887 ,(2008) , 10.1038/NRI2417