Modeling Univariate Distributions

作者: David Ruppert

DOI: 10.1007/978-1-4419-7787-8_5

关键词:

摘要: As seen in Chap. 4, usually the marginal distributions of financial time series are not well fit by normal distributions. Fortunately, there a number suitable alternative models, such as t-distributions, generalized error distributions, and skewed versions t- All these will be introduced this chapter. Typically, parameters estimated maximum likelihood. Sections 5.9 5.14 provide an introduction to likelihood estimator (MLE) , Sect. 5.18 provides references for further study on topic.

参考文章(13)
G. E. P. Box, D. R. Cox, An Analysis of Transformations Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 26, pp. 211- 243 ,(1964) , 10.1111/J.2517-6161.1964.TB00553.X
A. W. van der Vaart, Asymptotic Statistics Cambridge University Press. ,(1998) , 10.1017/CBO9780511802256
Carmen Fernández, Mark F. J. Steel, On Bayesian Modeling of Fat Tails and Skewness Journal of the American Statistical Association. ,vol. 93, pp. 359- 371 ,(1998) , 10.1080/01621459.1998.10474117
CLIFFORD M. HURVICH, CHIH-LING TSAI, Regression and time series model selection in small samples Biometrika. ,vol. 76, pp. 297- 307 ,(1989) , 10.1093/BIOMET/76.2.297
Adelchi Azzalini, Antonella Capitanio, Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 65, pp. 367- 389 ,(2003) , 10.1111/1467-9868.00391
Steven G. Self, Kung-Yee Liang, Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions Journal of the American Statistical Association. ,vol. 82, pp. 605- 610 ,(1987) , 10.1080/01621459.1987.10478472
D. Ruppert, M.P. Wand, CORRECTING FOR KURTOSIS IN DENSITY ESTIMATION Australian & New Zealand Journal of Statistics. ,vol. 34, pp. 19- 29 ,(1992) , 10.1111/J.1467-842X.1992.TB01039.X
Erich Leo Lehmann, Elements of large-sample theory ,(1998)
Kenneth P. Burnham, David R. Anderson, Model selection and multimodel inference ,(1998)