Rule extraction for glaucoma detection with summary data from StratusOCT

作者: Mei-Ling Huang , Hsin-Yi Chen , Jian-Cheng Lin

DOI: 10.1167/IOVS.06-0320

关键词:

摘要: Purpose To extract and induce rules of association for differentiating between normal glaucomatous eyes based on the quantitative assessment summary data reports from StratusOCT (optical coherence tomography; Carl Zeiss Meditec, Inc., Dublin, CA) in a Taiwan Chinese population. Methods One randomly selected eye each 64 patients with glaucoma 71 subjects was included study. Measurements variables (retinal nerve fiber layer thickness optic head analysis results) were obtained StratusOCT. A self-organizing map decision tree applied to features determine detection. Results The average visual field mean deviation -0.55 +/- 0.57 dB group -4.30 3.32 group. Vertical cup-to-disc (C/D) ratio inferior quadrant extracted tree, three determined Conclusions precise induced by novel application may enhance

参考文章(49)
George A. Cioffi, Alan L. Robin, Roger D. Eastman, Howard F. Perell, Faith A. Sarfarazi, Shalom E. Kelman, Confocal laser scanning ophthalmoscope. Reproducibility of optic nerve head topographic measurements with the confocal laser scanning ophthalmoscope. Ophthalmology. ,vol. 100, pp. 57- 62 ,(1993) , 10.1016/S0161-6420(93)31693-3
Teuvo Kohonen, Self-organized formation of topologically correct feature maps Biological Cybernetics. ,vol. 43, pp. 509- 521 ,(1988) , 10.1007/BF00337288
J Caprioli, L Brigatti, H Uchida, Detection of structural damage from glaucoma with confocal laser image analysis. Investigative Ophthalmology & Visual Science. ,vol. 37, pp. 2393- 2401 ,(1996)
Joseph Caprioli, Michael J. Greaney, Douglas C. Hoffman, Anne L. Coleman, Mamdouh Nakla, David F. Garway-Heath, Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Investigative Ophthalmology & Visual Science. ,vol. 43, pp. 140- 145 ,(2002)
J. Caprioli, D. Hoffman, Hyun Joon Park, S. Ugurlu, Slope of the peripapillary nerve fiber layer surface in glaucoma. Investigative Ophthalmology & Visual Science. ,vol. 39, pp. 2321- 2328 ,(1998)
Christopher A. Girkin, Robert N. Weinreb, Michael H. Goldbaum, Terrence Sejnowski, Terrence Sejnowski, Linda M. Zangwill, Christopher Bowd, Pamela A. Sample, Te-Won Lee, Te-Won Lee, Julia Williams, Kwokleung Chan, Kwokleung Chan, Eytan Blumenthal, Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry Investigative Ophthalmology & Visual Science. ,vol. 43, pp. 162- 169 ,(2002)
Andreas Rauber, Dieter Merkl, Automatic Labeling of Self-Organizing Maps: Making a Treasure-Map Reveal Its Secrets pacific asia conference on knowledge discovery and data mining. pp. 228- 237 ,(1999) , 10.1007/3-540-48912-6_31
Robert N. Weinreb, Michael H. Goldbaum, Terrence Sejnowski, Catherine Boden, Andreas G. Boehm, Pamela A. Sample, Te-Won Lee, Chris A. Johnson, Christiana Vasile, Kwokleung Chan, Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Investigative Ophthalmology & Visual Science. ,vol. 43, pp. 2660- 2665 ,(2002)
Gad Wollstein, David F Garway-Heath, Roger A Hitchings, Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology. ,vol. 105, pp. 1557- 1563 ,(1998) , 10.1016/S0161-6420(98)98047-2
H. Tokutaka, K. Yoshihara, K. Fujimura, K. Iwamoto, K. Obu-Cann, Application of self‐organizing maps (SOM) to Auger electron spectroscopy (AES) Surface and Interface Analysis. ,vol. 27, pp. 783- 788 ,(1999) , 10.1002/(SICI)1096-9918(199908)27:8<783::AID-SIA573>3.0.CO;2-Y