Controlling mutation/selection algorithms with stochastic approximation

作者: O. Francois

DOI: 10.1109/CEC.1999.782659

关键词:

摘要: The article describes a stochastic approximation method to deal with adaptation in the mutation/selection strategy. Small mutation probabilities are considered. First, convergence rate of population Markov chain toward equilibrium is given. This result allows control number generations sufficient reach stationary probability distribution. Under stationarity, algorithm proceeds parameter called radius. main issue initialization process. gives rule initialize this process for simple one-dimensional problems. guarantees both scheme, and that an accurate solution produced.

参考文章(11)
Raphaël Cerf, The dynamics of mutation-selection algorithms with large population sizes Annales De L Institut Henri Poincare-probabilites Et Statistiques. ,vol. 32, pp. 455- 508 ,(1996)
Allen E. Nix, Michael D. Vose, Modeling genetic algorithms with Markov chains Annals of Mathematics and Artificial Intelligence. ,vol. 5, pp. 79- 88 ,(1992) , 10.1007/BF01530781
Bruce Hajek, Cooling Schedules for Optimal Annealing Mathematics of Operations Research. ,vol. 13, pp. 311- 329 ,(1988) , 10.1287/MOOR.13.2.311
Uday Kumar Chakraborty, Kalyanmoy Deb, Mandira Chakraborty, Analysis of selection algorithms: A markov chain approach Evolutionary Computation. ,vol. 4, pp. 133- 167 ,(1996) , 10.1162/EVCO.1996.4.2.133
Thomas Bäck, Hans-Paul Schwefel, An overview of evolutionary algorithms for parameter optimization Evolutionary Computation. ,vol. 1, pp. 1- 23 ,(1993) , 10.1162/EVCO.1993.1.1.1
O. François, D. Zaharie, Markovian perturbations of discrete iterations: Lyapunov functions, global minimization, and associative memory Mathematical and Computer Modelling. ,vol. 29, pp. 81- 95 ,(1999) , 10.1016/S0895-7177(99)00072-2
O. Francois, An evolutionary strategy for global minimization and its Markov chain analysis IEEE Transactions on Evolutionary Computation. ,vol. 2, pp. 77- 90 ,(1998) , 10.1109/4235.735430
G. Rudolph, Convergence analysis of canonical genetic algorithms IEEE Transactions on Neural Networks. ,vol. 5, pp. 96- 101 ,(1994) , 10.1109/72.265964
J. Suzuki, A Markov chain analysis on simple genetic algorithms systems man and cybernetics. ,vol. 25, pp. 655- 659 ,(1995) , 10.1109/21.370197
Olivier François, Convergence in Simulated Evolution Algorithms. Complex Systems. ,vol. 10, ,(1996)