An FPGA implementation of real-time K-means clustering for color images

作者: Takashi Saegusa , Tsutomu Maruyama

DOI: 10.1007/S11554-007-0055-8

关键词:

摘要: K-means clustering is a very popular technique, which used in numerous applications. In the k-means algorithm, each point dataset assigned to nearest cluster by calculating distances from centers. The computation of these time-consuming task, particularly for large and number clusters. order achieve high performance, we need reduce distance calculations efficiently. this paper, describe an FPGA implementation color images based on filtering algorithm. our implementation, when point, clusters are apparently not closer than other filtered out using kd-trees dynamically generated iteration clustering. performance system 512 × 640 480 pixel (24-bit full RGB) more 30 fps, 20–30 fps 756 average dividing 256

参考文章(8)
Stephen J. Redmond, Conor Heneghan, A method for initialising the K-means clustering algorithm using kd-trees Pattern Recognition Letters. ,vol. 28, pp. 965- 973 ,(2007) , 10.1016/J.PATREC.2007.01.001
Mike Estlick, Miriam Leeser, James Theiler, John J. Szymanski, Algorithmic transformations in the implementation of K- means clustering on reconfigurable hardware field programmable gate arrays. pp. 103- 110 ,(2001) , 10.1145/360276.360311
T. Maruyama, Real-time K-Means Clustering for Color Images on Reconfigurable Hardware international conference on pattern recognition. ,vol. 2, pp. 816- 819 ,(2006) , 10.1109/ICPR.2006.961
Takashi Saegusa, Tsutomu Maruyama, An FPGA Implementation of K-Means Clustering for Color Images Based on Kd-Tree field-programmable logic and applications. pp. 1- 6 ,(2006) , 10.1109/FPL.2006.311268
Shehroz S. Khan, Amir Ahmad, Cluster center initialization algorithm for K -means clustering Pattern Recognition Letters. ,vol. 25, pp. 1293- 1302 ,(2004) , 10.1016/J.PATREC.2004.04.007
O. Yadid-Pecht, B. Maliatski, Hardware-driven adaptive k-means clustering for real-time video imaging IEEE Transactions on Circuits and Systems for Video Technology. ,vol. 15, pp. 164- 166 ,(2005) , 10.1109/TCSVT.2004.839977(410)
T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient k-means clustering algorithm: analysis and implementation IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 24, pp. 881- 892 ,(2002) , 10.1109/TPAMI.2002.1017616
Manoel Eusebio de Lima, Cristiano Coêlho de Araújo, Abel Guilhermino da S. Filho, Juliana A. Loureiro, Michelle Matos Horta, Haglay Alice, Maria das Graças S. Oliveira, Alejandro C. Frery, Jorge Cerqueira, Hyperspectral images clustering on reconfigurable hardware using the k-means algorithm symposium on integrated circuits and systems design. pp. 99- 104 ,(2003) , 10.5555/942808.943973