A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices

作者: Wilberd Van der Kallen , V. B. Mehta

DOI:

关键词:

摘要: We exhibit a nice Frobenius splitting σ on G× b where is the Lie algebra of Borel group B upper triangular matrices in general linear G = Gln. What about it, that it descends along familiar maps and specializes to subvarieties manner useful for study singularities closures conjugacy classes nilpotent n by matrices. In particular, we show these are simultaneously split, normal, have rational singularities. The result derived from vanishing theorem will be proved our paper [15]. Note normality has already been Donkin [3]. His method uses lot representation theory employs resolutions invented Kraft Procesi. An alternative approach given G. Lusztig. [11] he showed same occur Schubert varieties Kac-Moody groups affine Weyl groups. Now such infinite dimensional mastered Mathieu’s book [12], Mathieu shows they normal contrast with this, work remains finite dimensions. It relies explicit formulas. Indeed formula product principal minors specialization based an inspection what happens determinants. To descend g G, (along natural map G×b → g, cf. Grothendieck’s “simultaneous resolution” [2]), use Galois theoretic argument. find above generic point action trivial. As preparation computation first spell out trivializations canonical bundles t.

参考文章(15)
Olivier Mathieu (mathématicien.), Formules de caractères pour les algèbres de Kac-Moody générales Société mathématique de France. ,(1988)
Joseph Harris, Phillip A Griffiths, Principles of Algebraic Geometry ,(1978)
V. B. Mehta, V. Srinivas, Normality of Schubert Varieties American Journal of Mathematics. ,vol. 109, pp. 987- ,(1987) , 10.2307/2374497
Murray Gerstenhaber, On Dominance and Varieties of Commuting Matrices The Annals of Mathematics. ,vol. 73, pp. 324- ,(1961) , 10.2307/1970336
Hanspeter Kraft, Parametrisierung von Konjugationsklassen in $$\mathfrak{s}\mathfrak{l}_n$$ Mathematische Annalen. ,vol. 234, pp. 209- 220 ,(1978) , 10.1007/BF01420644
Stephen Donkin, The normality of closures of conjugacy classes of matrices Inventiones Mathematicae. ,vol. 101, pp. 717- 736 ,(1990) , 10.1007/BF01231523
G Lusztig, Green polynomials and singularities of unipotent classes Advances in Mathematics. ,vol. 42, pp. 169- 178 ,(1981) , 10.1016/0001-8708(81)90038-4
Hanspeter Kraft, Claudio Procesi, Closures of conjugacy classes of matrices are normal Inventiones Mathematicae. ,vol. 53, pp. 227- 247 ,(1979) , 10.1007/BF01389764
Wim Hesselink, The normality of closures of orbits in a Lie algebra Commentarii Mathematici Helvetici. ,vol. 54, pp. 105- 110 ,(1979) , 10.1007/BF02566258
Walter Borho, Hanspeter Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen Commentarii Mathematici Helvetici. ,vol. 54, pp. 61- 104 ,(1979) , 10.1007/BF02566256