Analysis on configuration spaces and Gibbs cluster ensembles

作者: L. Bogachev , A. Daletskii

DOI: 10.1134/S1061920807040048

关键词:

摘要: The distribution µ of a Gibbs cluster point process in χ = ℝd (with n-point clusters) is studied via the projection an auxiliary measure defined on space configurations × χ n. We show that quasi-invariant with respect to group Diff0(χ) compactly supported diffeomorphisms and prove integration-by-parts formula for µ. corresponding equilibrium stochastic dynamics then constructed by using method Dirichlet forms.

参考文章(21)
Michael Röckner, Zhi-Ming Ma, Construction of diffusions on configuration spaces Osaka Journal of Mathematics. ,vol. 37, pp. 273- 314 ,(2000) , 10.18910/11049
Tobias Kuna, Yuri Kondratiev, Jose Luis Silva, Marked Gibbs measures via cluster expansion arXiv: Mathematical Physics. ,(1999)
P.-Y. Cheng, J. S. Baskin, A. H. Zewail, Dynamics of clusters: From elementary to biological structures Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 10570- 10576 ,(2006) , 10.1073/PNAS.0507114103
A M Vershik, I M Gel'fand, M I Graev, REPRESENTATIONS OF THE GROUP OF DIFFEOMORPHISMS Russian Mathematical Surveys. ,vol. 30, pp. 1- 50 ,(1975) , 10.1070/RM1975V030N06ABEH001527
Sergio Albeverio, Leonid V. Bogachev, Brownian Survival in a Clusterized Trapping Medium Reviews in Mathematical Physics. ,vol. 10, pp. 147- 189 ,(1998) , 10.1142/S0129055X98000057
Robert J Tibshirani, Bradley Efron, An introduction to the bootstrap ,(1993)