Batalin-Fradkin-Vilkovisky approach for gauge invariant systems with closed algebra

作者: G.N. Rybkin

DOI: 10.1016/0370-2693(92)91599-5

关键词:

摘要: Abstract Systems for which the algebra of gauge transformation iin lagrangian formalism is closed, are considered. The hamiltonian BRST charge and invariant found explicitly. Their expansions in powers ghost variables contain, general, an infinite number terms.

参考文章(13)
Paul Adrien Maurice Dirac, Lectures on Quantum Mechanics ,(2001)
P.N. PYATOV, A.V. RAZUMOV, GAUGE INVARIANCE AND CONSTRAINTS International Journal of Modern Physics A. ,vol. 04, pp. 3211- 3228 ,(1989) , 10.1142/S0217751X8900131X
C. Becchi, A. Rouet, R. Stora, The abelian Higgs Kibble model, unitarity of the S-operator Physics Letters B. ,vol. 52, pp. 344- 346 ,(1974) , 10.1016/0370-2693(74)90058-6
E.S. Fradkin, G.A. Vilkovisky, Quantization of relativistic systems with constraints Physics Letters B. ,vol. 55, pp. 224- 226 ,(1975) , 10.1016/0370-2693(75)90448-7
I.A. Batalin, E.S. Fradkin, A generalized canonical formalism and quantization of reducible gauge theories Physics Letters B. ,vol. 122, pp. 157- 164 ,(1983) , 10.1016/0370-2693(83)90784-0
C. Becchi, A. Rouet, R. Stora, Renormalization of the Abelian Higgs-Kibble Model Communications in Mathematical Physics. ,vol. 42, pp. 127- 162 ,(1975) , 10.1007/BF01614158
I.A. Batalin, G.A. Vilkovisky, Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints Physics Letters B. ,vol. 69, pp. 309- 312 ,(1977) , 10.1016/0370-2693(77)90553-6