Simulation of two and three-dimensional disordered systems: Lifshitz tails and localization properties

作者: Hans De Raedt , Pedro de Vries

DOI: 10.1007/BF01313668

关键词:

摘要: Very large two and three-dimensional realizations of the Anderson model for localization are studied by solving time-dependent Schrodinger equation. The density states is calculated Lifshitz tails extracted. Eigenstates at various energies computed analyzed. length determined as a function strength disorder energy. For moderate substantial deviations from results obtained strip-and-rod technique found.

参考文章(39)
A. MacKinnon, B. Kramer, One-Parameter Scaling of Localization Length and Conductance in Disordered Systems Physical Review Letters. ,vol. 47, pp. 1546- 1549 ,(1981) , 10.1103/PHYSREVLETT.47.1546
Franz Wegner, The mobility edge problem: Continuous symmetry and a conjecture European Physical Journal B. ,vol. 35, pp. 207- 210 ,(1979) , 10.1007/BF01319839
Franz Wegner, Bounds on the density of states in disordered systems European Physical Journal B. ,vol. 44, pp. 9- 15 ,(1981) , 10.1007/BF01292646
Franz J. Wegner, Electrons in disordered systems. Scaling near the mobility edge European Physical Journal B. ,vol. 25, pp. 327- 337 ,(1976) , 10.1007/BF01315248
A. D. Zdetsis, C. M. Soukoulis, E. N. Economou, Gary S. Grest, Localization in two- and three-dimensional systems away from the band center Physical Review B. ,vol. 32, pp. 7811- 7816 ,(1985) , 10.1103/PHYSREVB.32.7811
Pedro de Vries, Hans De Raedt, Ad Lagendijk, Localization of waves in fractals: Spatial behavior. Physical Review Letters. ,vol. 62, pp. 2515- 2518 ,(1989) , 10.1103/PHYSREVLETT.62.2515
Dieter Vollhardt, Peter Wölfle, Anderson Localization ind<~2Dimensions: A Self-Consistent Diagrammatic Theory Physical Review Letters. ,vol. 45, pp. 1370- 1370 ,(1980) , 10.1103/PHYSREVLETT.45.1370.2
P. W. Anderson, D. J. Thouless, E. Abrahams, D. S. Fisher, New method for a scaling theory of localization Physical Review B. ,vol. 22, pp. 3519- 3526 ,(1980) , 10.1103/PHYSREVB.22.3519
V. M. Dwyer, D. L. Weaire, A critical examination of a new version of the equation-of-motion method Philosophical Magazine Part B. ,vol. 53, ,(1986) , 10.1080/13642818608238965