SLAM for Robotic Navigation by Fusing RGB-D and Inertial Data in Recurrent and Convolutional Neural Networks

作者: Ruixu Liu , Ju Shen , Chen Chen , Jianjun Yang

DOI: 10.1109/ICMSR.2019.8835472

关键词:

摘要: Simultaneous localization and mapping (SLAM) is a key component for mobile robot navigation that enables many service robotic applications. The capacity of acquiring accurate 3D-map an environment critical robots to perform various tasks with high degree autonomy. Due the indoor complexity sensor uncertainties, SLAM remains challenging task in domain 3D reconstruction. In this paper, we propose simple yet effective solution RGB-D based by integrating Inertial Measurement Unit (IMU) into recurrent convolutional neural network leads enhanced pose estimation point cloud registration. IMU data provide advantage fast rate inertial measurement drift error reduction. Specifically, imposing additional constraints from device, optimal long-short term memory LSTM) trained mitigate scale ambiguity thus improve concatenated ego-motion estimation. Compared existing techniques recent effort RNN solutions reconstruction, show our approach competitive accuracy robustness.

参考文章(15)
Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, Thomas Brox, None, FlowNet: Learning Optical Flow with Convolutional Networks 2015 IEEE International Conference on Computer Vision (ICCV). pp. 2758- 2766 ,(2015) , 10.1109/ICCV.2015.316
Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Trevor Darrell, Kate Saenko, Long-term recurrent convolutional networks for visual recognition and description computer vision and pattern recognition. pp. 2625- 2634 ,(2015) , 10.1109/CVPR.2015.7298878
Jrgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, Daniel Cremers, A benchmark for the evaluation of RGB-D SLAM systems intelligent robots and systems. pp. 573- 580 ,(2012) , 10.1109/IROS.2012.6385773
Christian Kerl, Jurgen Sturm, Daniel Cremers, Dense visual SLAM for RGB-D cameras intelligent robots and systems. pp. 2100- 2106 ,(2013) , 10.1109/IROS.2013.6696650
Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory Neural Computation. ,vol. 9, pp. 1735- 1780 ,(1997) , 10.1162/NECO.1997.9.8.1735
Navdeep Jaitly, Alex Graves, Towards End-To-End Speech Recognition with Recurrent Neural Networks international conference on machine learning. pp. 1764- 1772 ,(2014)
S. Rusinkiewicz, M. Levoy, Efficient variants of the ICP algorithm digital identity management. pp. 145- 152 ,(2001) , 10.1109/IM.2001.924423
Sen-ching S. Cheung, Po-Chang Su, Ju Shen, A robust RGB-D SLAM system for 3D environment with planar surfaces international conference on image processing. pp. 275- 279 ,(2013) , 10.1109/ICIP.2013.6738057
Christian Forster, Luca Carlone, Frank Dellaert, Davide Scaramuzza, IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation robotics science and systems. ,vol. 11, pp. 1- 20 ,(2015) , 10.15607/RSS.2015.XI.006
Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, Christian Theobalt, BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface re-integration ACM Transactions on Graphics. ,vol. 36, pp. 24- ,(2017) , 10.1145/3072959.3054739