Decomposable approximations of nuclear C∗-algebras

作者: Ilan Hirshberg , Eberhard Kirchberg , Stuart White

DOI: 10.1016/J.AIM.2012.03.028

关键词:

摘要: Abstract We show that nuclear C ∗ -algebras have a refined version of the completely positive approximation property, in which maps approximately factorize through finite dimensional algebras are convex combinations order zero maps. use this to separable -algebra A is closely contained B embeds into .

参考文章(19)
G G Kasparov, HILBERT C?-MODULES: THEOREMS OF STINESPRING AND VOICULESCU JOURNAL OF OPERATOR THEORY. ,vol. 4, pp. 133- 150 ,(1980)
EBERHARD KIRCHBERG, WILHELM WINTER, COVERING DIMENSION AND QUASIDIAGONALITY International Journal of Mathematics. ,vol. 15, pp. 63- 85 ,(2004) , 10.1142/S0129167X04002119
E. Christensen, A. M. Sinclair, R. R. Smith, S. A. White, W. Winter, The spatial isomorphism problem for close separable nuclear C*-algebras. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 107, pp. 587- 591 ,(2010) , 10.1073/PNAS.0913281107
E. Kirchberg, N. Ch. Phillips, Embedding of exact C*-algebras in the Cuntz algebra 2 Crelle's Journal. ,vol. 2000, pp. 17- 53 ,(2000) , 10.1515/CRLL.2000.065
Eberhard Kirchberg, C*-Nuclearity implies CPAP Mathematische Nachrichten. ,vol. 76, pp. 203- 212 ,(1977) , 10.1002/MANA.19770760115
Wilhelm Winter, Nuclear dimension and $\mathcal{Z}$ -stability of pure C ∗ -algebras Inventiones Mathematicae. ,vol. 187, pp. 259- 342 ,(2012) , 10.1007/S00222-011-0334-7
Erik Christensen, NEAR INCLUSIONS OF C*-ALGEBRAS Acta Mathematica. ,vol. 144, pp. 249- 265 ,(1980) , 10.1007/BF02392125
George A. Elliott, Andrew S. Toms, Regularity properties in the classification program for separable amenable C*-algebras Bulletin of the American Mathematical Society. ,vol. 45, pp. 229- 245 ,(2008) , 10.1090/S0273-0979-08-01199-3
Wilhelm Winter, Decomposition rank and {Z} -stability Inventiones Mathematicae. ,vol. 179, pp. 229- 301 ,(2010) , 10.1007/S00222-009-0216-4