On the average depth of asymmetric LC-tries

作者: Yuriy A. Reznik

DOI: 10.1016/J.IPL.2005.06.008

关键词:

摘要: Andersson and Nilsson have already shown that the average depth Dn of random LC-tries is only Θ(log* n) when keys are produced by a symmetric memoryless process, = O(log logn) process asymmetric. In this paper we refine second estimate showing asymptotically (with n ⇒ ∞): ∼ 1/η log logn, where number inserted in trie, η - log(1 h/h-∞), h -p p q entropy binary, source with probabilities p, 1 (p≠q), h-∞ min(p, q).

参考文章(24)
Donald E. Knuth, The art of computer programming, volume 3: (2nd ed.) sorting and searching Addison Wesley Longman Publishing Co., Inc.. ,(1998)
Stefan Nilsson, Gunnar Karlsson, Fast address look-up for internet routers BC '98 Proceedings of the IFIP TC6/WG6.2 Fourth International Conference on Broadband Communications: The future of telecommunications. ,vol. 121, pp. 11- 22 ,(1998) , 10.1007/978-0-387-35378-4_2
Arne Andersson, Stefan Nilsson, Faster searching in tries and quadtrees—An analysis of level compression Algorithms — ESA '94. pp. 82- 93 ,(1994) , 10.1007/BFB0049399
L. Devroye, A note on the average depth of tries Computing. ,vol. 28, pp. 367- 371 ,(1982) , 10.1007/BF02279819
Donald Ervin Knuth, Sorting and Searching ,(1973)
Y.A. Reznik, W. Szpankowski, Improved behaviour of tries by the "symmetrization" of the source data compression conference. pp. 372- 381 ,(2002) , 10.1109/DCC.2002.999975
Philippe Flajolet, Robert Sedgewick, Digital search trees revisited SIAM Journal on Computing. ,vol. 15, pp. 748- 767 ,(1986) , 10.1137/0215054
Luc Devroye, Wojcieh Szpankowski, Probabilistic behavior of asymmetric level compressed tries Random Structures and Algorithms. ,vol. 27, pp. 185- 200 ,(2005) , 10.1002/RSA.V27:2
Philippe Flajolet, Andrew Odlyzko, Singularity analysis of generating functions SIAM Journal on Discrete Mathematics. ,vol. 3, pp. 216- 240 ,(1990) , 10.1137/0403019