Antiangiogenesis efficacy of nitric oxide donors.

作者: J. A. Powell , S. N. Mohamed , J. S. Kerr , Shaker A. Mousa

DOI: 10.1002/1097-4644(20010101)80:1<104::AID-JCB90>3.0.CO;2-K

关键词:

摘要: Angiogenesis is a complex process involving endothelial cell migration, proliferation, invasion, and tube formation. Inhibition of these processes might have implications in various angiogenesis-mediated disorders. Because nitric oxide (NO) known to play key role vascular diseases, the present study was undertaken determine NO using donor, S-nitroso N-acetyl penicillamine (SNAP) glutathione (SNAG). The antiangiogenic efficacy donors examined vivo vitro model systems. studies demonstrated ability SNAP inhibit cytokine fibroblast growth factor (FGF2)-stimulated formation serum-induced proliferation. inhibitory effect on proliferation by concentrations above millimolar range associated with significant shifts concentration metabolites. Furthermore, mouse Matrigel implant chick chorioallantoic membrane (CAM) models, maximal (85-95% inhibition) (FGF2)-induced neovascularization both models. SNAG resulted 85% inhibition FGF2-induced when given at 5 mg/kg/day infusion minipumps during 14 days 87% angiogenesis induced FGF2 CAM administered single dose 50 microg. Thus, be useful tool for human tumor growth, or neovascular, ocular, inflammatory diseases.

参考文章(21)
R. Pili, A. Passaniti, G. R. Martin, D. S. Grant, R. M. Taylor, P. V. Long, Y. Guo, R. R. Pauly, J. A. Haney, A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Laboratory Investigation. ,vol. 67, pp. 519- 528 ,(1992)
Ido Betel, Joke Martijnse, Gerard van der Westen, Mitogenic activation and proliferation of mouse thymocytes. Comparison between isotope incorporation and flow-microfluorometry. Experimental Cell Research. ,vol. 124, pp. 329- 337 ,(1979) , 10.1016/0014-4827(79)90208-8
Jonathan S. Reichner, Jorge E. Albina, Romeo B. Mateo, Shijun Cui, Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or -independent mechanisms. Cancer Research. ,vol. 54, pp. 2462- 2467 ,(1994)
Amlan RayChaudhury, Henri Frischer, Asrar B. Malik, Inhibition of endothelial cell proliferation and bFGF‐induced phenotypic modulation by nitric oxide Journal of Cellular Biochemistry. ,vol. 63, pp. 125- 134 ,(1996) , 10.1002/(SICI)1097-4644(19961101)63:2<125::AID-JCB1>3.0.CO;2-#
R. M. J. Palmer, A. G. Ferrige, S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor Nature. ,vol. 327, pp. 524- 526 ,(1987) , 10.1038/327524A0
Eva Pipili-Synetos, A. Papageorgiou, Eleni Sakkoula, Georgia Sotiropoulou, T. Fotsis, G. Karakiulakis, M.E. Maragoudakis, Inhibition of angiogenesis, tumour growth and metastasis by the NO-releasing vasodilators, isosorbide mononitrate and dinitrate British Journal of Pharmacology. ,vol. 116, pp. 1829- 1834 ,(1995) , 10.1111/J.1476-5381.1995.TB16670.X
Allen M. Miles, David A. Wink, John C. Cook, Matthew B. Grisham, Determination of nitric oxide using fluorescence spectroscopy Methods in Enzymology. ,vol. 268, pp. 105- 120 ,(1996) , 10.1016/S0076-6879(96)68013-6
Eva Pipili-Synetos, Sosanna Kritikou, Evangelia Papadimitriou, Aglaia Athanassiadou, C Flordellis, M E Maragoudakis, Nitric oxide synthase expression, enzyme activity and NO production during angiogenesis in the chick chorioallantoic membrane British Journal of Pharmacology. ,vol. 129, pp. 207- 213 ,(2000) , 10.1038/SJ.BJP.0702986