α- and β-tubulin from Phytophthora capsici KACC 40483: molecular cloning, biochemical characterization, and antimicrotubule screening

作者: Bon-Sung Koo , Haechul Park , Satish Kalme , Hye-Yeon Park , Jin Wook Han

DOI: 10.1007/S00253-008-1821-7

关键词:

摘要: Internal fragments of α- and β-tubulin genes were generated using reverse transcription polymerase chain reaction (RT-PCR), the termini isolated 5′- 3′-rapid amplification cDNA ends. Phytophthora capsici specific primers then used to generate full-length by RT-PCR. The recombinant expressed in Escherichia coli BL21 (DE3), purified under denaturing conditions, average yields 3.38–4.5 mg α-tubulin 2.89–4.0 mg β-tubulin, each from 1-l culture. Optimum conditions obtained for formation microtubule-like structures. A value 0.12 mg/ml was as critical concentration polymerization P. tubulin. Benomyl inhibited with half-maximal inhibition (IC50) = 468 ± 20 μM. Approximately 18.66 ± 0.13 cysteine residues per tubulin dimer accessible 5,5′-dithiobis-(2-nitrobenzoic acid), a quantification reagent sulfhydryl 12.43 ± 0.12 presence 200 μM benomyl. order preference accessibility cysteines benomyl > colchicine GTP taxol, changes conformed that binding sites these ligands folding correctly. Fluorescence resonance energy transfer technique high throughput screening chemical library search antimitotic agent. There significant difference relative fluorescence 210-O-2 210-O-14 compared colchicine.

参考文章(51)
A. Sid Ahmed, M. Ezziyyani, C. Pérez Sánchez, M.E. Candela, Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants European Journal of Plant Pathology. ,vol. 109, pp. 633- 637 ,(2003) , 10.1023/A:1024734216814
William A. Pryor, Mechanisms of sulfur reactions McGraw-Hill. ,(1962)
Manami Roychowdhury, Nabanita Sarkar, Tapas Manna, Shankar Bhattacharyya, Taradas Sarkar, Pampi BasuSarkar, Siddhartha Roy, Bhabatarak Bhattacharyya, Sulfhydryls of tubulin European Journal of Biochemistry. ,vol. 267, pp. 3469- 3476 ,(2000) , 10.1046/J.1432-1327.2000.01369.X
B.D. Shivanna, M.R. Mejillano, T.D. Williams, R.H. Himes, Exchangeable GTP binding site of beta-tubulin. Identification of cysteine 12 as the major site of cross-linking by direct photoaffinity labeling. Journal of Biological Chemistry. ,vol. 268, pp. 127- 132 ,(1993) , 10.1016/S0021-9258(18)54123-5
R K MacNeal, D L Purich, Stoichiometry and role of GTP hydrolysis in bovine neurotubule assembly. Journal of Biological Chemistry. ,vol. 253, pp. 4683- 4687 ,(1978) , 10.1016/S0021-9258(17)30443-X
James H Thomas, Norma F Neff, David Botstein, Isolation and Characterization of Mutations in the β-Tubulin Gene of SACCHAROMYCES CEREVISIAE Genetics. ,vol. 111, pp. 715- 734 ,(1985) , 10.1093/GENETICS/111.4.715
D Burke, P Gasdaska, L Hartwell, Dominant effects of tubulin overexpression in Saccharomyces cerevisiae. Molecular and Cellular Biology. ,vol. 9, pp. 1049- 1059 ,(1989) , 10.1128/MCB.9.3.1049
M.Andrew Hoyt, Laura Totis, B.Tibor Roberts, S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function Cell. ,vol. 66, pp. 507- 517 ,(1991) , 10.1016/0092-8674(81)90014-3