A linear support higher order tensor domain description for one-class classification

作者: Yanyan Chen , Kuaini Wang , Ping Zhong

DOI: 10.3233/JIFS-17325

关键词:

摘要:

参考文章(20)
Wenxin Zhu, Ping Zhong, Minimum Class Variance SVM+ for data classification Advanced Data Analysis and Classification. ,vol. 11, pp. 79- 96 ,(2017) , 10.1007/S11634-015-0212-Z
Jun Luo, Li Ding, Zhisong Pan, Guiqiang Ni, Guyu Hu, Research on cost-sensitive learning in one-class anomaly detection algorithms autonomic and trusted computing. pp. 259- 268 ,(2007) , 10.1007/978-3-540-73547-2_27
David M.J. Tax, Robert P.W. Duin, Support Vector Data Description Machine Learning. ,vol. 54, pp. 45- 66 ,(2004) , 10.1023/B:MACH.0000008084.60811.49
Karl Sjöstrand, Michael Sass Hansen, Henrik B. Larsson, Rasmus Larsen, A path algorithm for the support vector domain description and its application to medical imaging Medical Image Analysis. ,vol. 11, pp. 417- 428 ,(2007) , 10.1016/J.MEDIA.2007.07.008
Zhifeng Hao, Lifang He, Bingqian Chen, Xiaowei Yang, A Linear Support Higher-Order Tensor Machine for Classification IEEE Transactions on Image Processing. ,vol. 22, pp. 2911- 2920 ,(2013) , 10.1109/TIP.2013.2253485
CARMEN LAI, DAVID M. J. TAX, ROBERT P. W. DUIN, ELŻBIETA PĘKALSKA, PAVEL PACLÍK, A STUDY ON COMBINING IMAGE REPRESENTATIONS FOR IMAGE CLASSIFICATION AND RETRIEVAL International Journal of Pattern Recognition and Artificial Intelligence. ,vol. 18, pp. 867- 890 ,(2004) , 10.1142/S0218001404003459
Reshma Khemchandani, Anuj Karpatne, Suresh Chandra, Proximal support tensor machines International Journal of Machine Learning and Cybernetics. ,vol. 4, pp. 703- 712 ,(2013) , 10.1007/S13042-012-0132-6
Wenxin Zhu, Ping Zhong, A new one-class SVM based on hidden information Knowledge Based Systems. ,vol. 60, pp. 35- 43 ,(2014) , 10.1016/J.KNOSYS.2014.01.002
Hong-gang Bu, Jun Wang, Xiu-bao Huang, Fabric defect detection based on multiple fractal features and support vector data description Engineering Applications of Artificial Intelligence. ,vol. 22, pp. 224- 235 ,(2009) , 10.1016/J.ENGAPPAI.2008.05.006