Graphical Generative Adversarial Networks

作者: Max Welling , Jun Zhu , Bo Zhang , Chongxuan Li

DOI:

关键词:

摘要: We propose Graphical Generative Adversarial Networks (Graphical-GAN) to model structured data. Graphical-GAN conjoins the power of Bayesian networks on compactly representing dependency structures among random variables and that generative adversarial learning expressive functions. introduce a recognition infer posterior distribution latent given observations. generalize Expectation Propagation (EP) algorithm learn jointly. Finally, we present two important instances Graphical-GAN, i.e. Gaussian Mixture GAN (GMGAN) State Space (SSGAN), which can successfully discrete temporal visual datasets, respectively.

参考文章(47)
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, Lawrence K Saul, None, An introduction to variational methods for graphical models Machine Learning. ,vol. 37, pp. 105- 161 ,(1999) , 10.1023/A:1007665907178
Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization arXiv: Learning. ,(2014)
Thomas Minka, Divergence measures and message passing pp. 17- ,(2005)
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
Ziwei Liu, Ping Luo, Xiaogang Wang, Xiaoou Tang, Deep Learning Face Attributes in the Wild 2015 IEEE International Conference on Computer Vision (ICCV). pp. 3730- 3738 ,(2015) , 10.1109/ICCV.2015.425
Thomas P. Minka, Expectation propagation for approximate Bayesian inference uncertainty in artificial intelligence. pp. 362- 369 ,(2001)
Mathieu Aubry, Daniel Maturana, Alexei A. Efros, Bryan C. Russell, Josef Sivic, Seeing 3D Chairs: Exemplar Part-Based 2D-3D Alignment Using a Large Dataset of CAD Models computer vision and pattern recognition. pp. 3762- 3769 ,(2014) , 10.1109/CVPR.2014.487
Paul C. Shields, Imre Csiszár, Information Theory and Statistics: A Tutorial ,(2004)
Andreas Stuhlmüller, Noah Goodman, Jacob Taylor, Learning Stochastic Inverses neural information processing systems. ,vol. 26, pp. 3048- 3056 ,(2013)
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition Proceedings of the IEEE. ,vol. 86, pp. 2278- 2324 ,(1998) , 10.1109/5.726791