Advances in probabilistic reasoning

作者: Dan Geiger , David Heckerman

DOI: 10.1016/B978-1-55860-203-8.50019-X

关键词:

摘要: This paper discuses multiple Bayesian networks representation paradigms for encoding asymmetric independence assertions. We offer three contributions: (1) an inference mechanism that makes explicit use of to speed up computations, (2) a simplified definition similarity and extensions their theory, (3) generalized scheme encodes more types assertions than do networks.

参考文章(6)
Dan Geiger, David Heckerman, separable and transitive graphoids uncertainty in artificial intelligence. pp. 65- 76 ,(1990)
Thomas Verma, Judea Pearl, None, Causal networks: semantics and expressiveness uncertainty in artificial intelligence. ,vol. 9, pp. 69- 78 ,(1990) , 10.1016/B978-0-444-88650-7.50011-1
S. L. Lauritzen, D. J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems Journal of the royal statistical society series b-methodological. ,vol. 50, pp. 415- 448 ,(1990) , 10.1111/J.2517-6161.1988.TB01721.X
Edward H. Shortliffe, David Earl Heckerman, Probabilistic Similarity Networks ,(1991)
Ross D. Shachter, Evaluating Influence Diagrams Operations Research. ,vol. 34, pp. 871- 882 ,(1986) , 10.1287/OPRE.34.6.871