Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer.

作者: Michel E. Vandenberghe , Marietta L. J. Scott , Paul W. Scorer , Magnus Söderberg , Denis Balcerzak

DOI: 10.1038/SREP45938

关键词:

摘要: Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have potential supplement pathologist expertise ensure constant We developed a computational approach based on that automatically scores HER2, defines patient eligibility anti-HER2 targeted therapies breast In cohort 71 tumour resection samples, automated showed concordance 83% pathologist. The twelve discordant were then independently reviewed, leading modification diagnosis from initial assessment eight cases. Diagnostic discordance was found be largely caused perceptual differences assessing HER2 expression due high staining heterogeneity. This study provides evidence aided facilitate clinical decision making cancer identifying at risk misdiagnosis.

参考文章(49)
Bram van Ginneken, Cornelia M. Schaefer-Prokop, Mathias Prokop, Computer-aided Diagnosis: How to Move from the Laboratory to the Clinic Radiology. ,vol. 261, pp. 719- 732 ,(2011) , 10.1148/RADIOL.11091710
Guotai Wang, Maria A. Zuluaga, Rosalind Pratt, Michael Aertsen, Anna L. David, Jan Deprest, Tom Vercauteren, Sebastien Ourselin, Slic-Seg: Slice-by-Slice Segmentation Propagation of the Placenta in Fetal MRI Using One-Plane Scribbles and Online Learning medical image computing and computer assisted intervention. ,vol. 9351, pp. 29- 37 ,(2015) , 10.1007/978-3-319-24574-4_4
Jun Xu, Xiaofei Luo, Guanhao Wang, Hannah Gilmore, Anant Madabhushi, A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing. ,vol. 191, pp. 214- 223 ,(2016) , 10.1016/J.NEUCOM.2016.01.034
Gustav Stålhammar, Nelson Fuentes Martinez, Michael Lippert, Nicholas P Tobin, Ida Mølholm, Lorand Kis, Gustaf Rosin, Mattias Rantalainen, Lars Pedersen, Jonas Bergh, Michael Grunkin, Johan Hartman, Digital image analysis outperforms manual biomarker assessment in breast cancer. Modern Pathology. ,vol. 29, pp. 318- 329 ,(2016) , 10.1038/MODPATHOL.2016.34
Hai Su, Fuyong Xing, Xiangfei Kong, Yuanpu Xie, Shaoting Zhang, Lin Yang, Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders. medical image computing and computer-assisted intervention. ,vol. 9351, pp. 383- 390 ,(2015) , 10.1007/978-3-319-24574-4_46
Le Hou, Dimitris Samaras, Tahsin M. Kurc, Yi Gao, James E. Davis, Joel H. Saltz, Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification computer vision and pattern recognition. ,vol. 2016, pp. 2424- 2433 ,(2016) , 10.1109/CVPR.2016.266
Niamh E. Buckley, Claire Forde, Darragh G. McArt, David P. Boyle, Paul B. Mullan, Jacqueline A. James, Perry Maxwell, Stephen McQuaid, Manuel Salto-Tellez, Quantification of HER2 heterogeneity in breast cancer-implications for identification of sub-dominant clones for personalised treatment Scientific Reports. ,vol. 6, pp. 23383- 23383 ,(2016) , 10.1038/SREP23383
Korsuk Sirinukunwattana, Shan E Ahmed Raza, Yee-Wah Tsang, David R. J. Snead, Ian A. Cree, Nasir M. Rajpoot, Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images IEEE Transactions on Medical Imaging. ,vol. 35, pp. 1196- 1206 ,(2016) , 10.1109/TMI.2016.2525803
MichaelC Montalto, An industry perspective: An update on the adoption of whole slide imaging Journal of Pathology Informatics. ,vol. 7, pp. 18- 18 ,(2016) , 10.4103/2153-3539.180014
Geert Litjens, Clara I. Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagtegaal, Iringo Kovacs, Christina Hulsbergen - van de Kaa, Peter Bult, Bram van Ginneken, Jeroen van der Laak, Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis Scientific Reports. ,vol. 6, pp. 26286- 26286 ,(2016) , 10.1038/SREP26286