Temporal Solitons of Modified Complex Ginzberg Landau Equation

作者: Sahay Shwetanshumala

DOI: 10.2528/PIERL08010401

关键词:

摘要: In this paper we have reported soliton solution of one dimensional modified complex Ginzburg Landau equation. The parametric region where such is possible also identified.

参考文章(33)
S. Konar, Soumendu Jana, S. Shwetanshumala, Incoherently coupled screening photovoltaic spatial solitons in biased photovoltaic photorefractive crystals Optics Communications. ,vol. 273, pp. 324- 333 ,(2007) , 10.1016/J.OPTCOM.2007.01.051
Alidou Mohamadou, A. Kenfack Jiotsa, T.C. Kofané, Pattern selection and modulational instability in the one-dimensional modified complex Ginzburg–Landau equation Chaos Solitons & Fractals. ,vol. 24, pp. 957- 966 ,(2005) , 10.1016/J.CHAOS.2004.09.106
Ji-Huan He, Approximate analytical solution for seepage flow with fractional derivatives in porous media Computer Methods in Applied Mechanics and Engineering. ,vol. 167, pp. 57- 68 ,(1998) , 10.1016/S0045-7825(98)00108-X
Woo-Pyo Hong, Stable Stationary Solitons of the One-Dimensional Modified Complex Ginzburg-Landau Equation Zeitschrift für Naturforschung A. ,vol. 62, pp. 368- 372 ,(2007) , 10.1515/ZNA-2007-7-803
A Biswas, S Konar, E Zerrad, None, Soliton-soliton Interaction with Parabolic Law Nonlinearity Journal of Electromagnetic Waves and Applications. ,vol. 20, pp. 927- 939 ,(2006) , 10.1163/156939306776149833
Anjan Biswas, None, Stochastic Perturbation of Parabolic Law Optical Solutions Journal of Electromagnetic Waves and Applications. ,vol. 21, pp. 1479- 1488 ,(2007) , 10.1163/156939307782000262
Mario D’Acunto, Self-excited systems: Analytical determination of limit cycles Chaos, Solitons & Fractals. ,vol. 30, pp. 719- 724 ,(2006) , 10.1016/J.CHAOS.2006.03.070