Hybrid Projective Synchronization of Fractional-Order Neural Networks with Time Delays

作者: G. Velmurugan , R. Rakkiyappan

DOI: 10.1007/978-81-322-2485-3_53

关键词:

摘要: In this paper, the problem of hybrid projective synchronization fractional-order neural networks with time delay is extensively investigated. The hub structure and considered. By using stability theorem linear fractional order systems multiple delays constructing an appropriate feedback control, some new sufficient conditions are derived to ensure delays. It means that response system can be synchronized drive based on choice a scaling matrix. Finally, numerical example provided demonstrate effectiveness our theoretical results.

参考文章(24)
Arefeh Boroomand, Mohammad B. Menhaj, Fractional-order hopfield neural networks international conference on neural information processing. pp. 883- 890 ,(2008) , 10.1007/978-3-642-02490-0_108
C.Y. Chee, D. Xu, Chaos-based M-ary digital communication technique using controlled projective synchronisation communication systems and networks. ,vol. 153, pp. 357- 360 ,(2006) , 10.1049/IP-CDS:20050139
Suwat Kuntanapreeda, None, Robust synchronization of fractional-order unified chaotic systems via linear control Computers & Mathematics With Applications. ,vol. 63, pp. 183- 190 ,(2012) , 10.1016/J.CAMWA.2011.11.007
Brian N Lundstrom, Matthew H Higgs, William J Spain, Adrienne L Fairhall, Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience. ,vol. 11, pp. 1335- 1342 ,(2008) , 10.1038/NN.2212
Louis M. Pecora, Thomas L. Carroll, Synchronization in chaotic systems Physical Review Letters. ,vol. 64, pp. 821- 824 ,(1990) , 10.1103/PHYSREVLETT.64.821
Weihua Deng, Changpin Li, Jinhu Lü, Stability analysis of linear fractional differential system with multiple time delays Nonlinear Dynamics. ,vol. 48, pp. 409- 416 ,(2007) , 10.1007/S11071-006-9094-0
Hadi Taghvafard, G.H. Erjaee, Phase and anti-phase synchronization of fractional order chaotic systems via active control Communications in Nonlinear Science and Numerical Simulation. ,vol. 16, pp. 4079- 4088 ,(2011) , 10.1016/J.CNSNS.2011.02.015
HAO ZHU, ZHONGSHI HE, SHANGBO ZHOU, LAG SYNCHRONIZATION OF THE FRACTIONAL-ORDER SYSTEM VIA NONLINEAR OBSERVER International Journal of Modern Physics B. ,vol. 25, pp. 3951- 3964 ,(2011) , 10.1142/S0217979211102253
Hu Wang, Yongguang Yu, Guoguang Wen, Stability analysis of fractional-order Hopfield neural networks with time delays Neural Networks. ,vol. 55, pp. 98- 109 ,(2014) , 10.1016/J.NEUNET.2014.03.012