Numerical Continuation of Solutions and Bifurcation Analysis in Multibody Systems Applied to Motorcycle Dynamics

作者: J. P. Meijaard , A. A. Popov

DOI: 10.1007/S11071-006-0753-Y

关键词:

摘要: It is shown how the equations of motion for a multibody system can be generated in symbolic form and resulting used program analysis nonlinear dynamical systems. Stationary periodic solutions are continued when parameter allowed to vary bifurcations found. The variational or linearized derivatives with respect parameters also provided program, which enhances efficiency accuracy calculations.

参考文章(41)
Jr. Guy L. Steele, Common LISP: the language (2nd ed.) Digital Press. ,(1990)
Eugene Allgower, Numerical path following Handbook of Numerical Analysis. ,vol. 5, pp. 3- 207 ,(1997) , 10.1016/S1570-8659(97)80002-6
A A Popov, J P Meijaard, APPLICATION OF NON-LINEAR DYNAMICS TO INSTABILITY PHENOMENA IN MOTORCYCLES Vehicle System Dynamics. ,vol. 41, pp. 567- 576 ,(2004)
J. P. Meijaard, Direct determination of periodic solutions of mechanical dynamical systems Archive of Applied Mechanics. ,vol. 64, pp. 249- 257 ,(1994) , 10.1007/BF00789123
Yuri A. Kuznetsov, Elements of applied bifurcation theory (2nd ed.) Springer-Verlag New York, Inc.. ,(1998)
Robin S. Sharp, The Parametrically Excited Multi-Pendulum Multibody System Dynamics. ,vol. 5, pp. 303- 313 ,(2001) , 10.1023/A:1011431200065
Robin S. Sharp, Erratum. Technical Note: The Parametrically Excited Multi-Pendulum Multibody System Dynamics. ,vol. 6, pp. 301- 302 ,(2001) , 10.1023/A:1012360211095
R. S. Sharp, W. Kortüm, Multibody computer codes in vehicle system dynamics Swets & Zeitlinger. ,(1993)
Michael William Sayers, Symbolic computer methods to automatically formulate vehicle simulation codes University of Michigan. ,(1990)
Robin S. Sharp, David J.N. Limebeer, A Motorcycle Model for Stability and Control Analysis Multibody System Dynamics. ,vol. 6, pp. 123- 142 ,(2001) , 10.1023/A:1017508214101