Reliable Retrieval of Top-k Tags

作者: Yong Xu , Reynold Cheng , Yudian Zheng

DOI: 10.1007/978-3-319-68783-4_23

关键词:

摘要: Collaborative tagging systems, such as Flickr and Del.icio.us, allow users to provide keyword labels, or tags, for various Internet resources (e.g., photos, songs, bookmarks). These which a rich source of information, have been used in important applications resource searching, webpage clustering, etc. However, tags are provided by casual users, so their quality cannot be guaranteed. In this paper, we examine question: given r set user-provided associated with r, can correctly described the k most frequent tags? To answer question, develop metric top-k sliding average similarity (top-k SAS) measures reliability tags. One threshold is then estimate whether sufficient retrieving Our experiments on real datasets show that threshold-based evaluation SAS effective efficient determine considered high-quality r.

参考文章(17)
Robert Wetzker, Carsten Zimmermann, Christian Bauckhage, Detecting Trends in Social Bookmarking Systems: A del.icio.us Endeavor International Journal of Data Warehousing and Mining. ,vol. 6, pp. 38- 57 ,(2010) , 10.4018/JDWM.2010090803
Margaret E.I. Kipp, D. Grant Campbell, Patterns and Inconsistencies in Collaborative Tagging Systems: An Examination of Tagging Practices association for information science and technology. ,vol. 43, pp. 1- 18 ,(2007) , 10.1002/MEET.14504301178
Chang Wan, Ben Kao, David W. Cheung, Location-sensitive resources recommendation in social tagging systems Proceedings of the 21st ACM international conference on Information and knowledge management - CIKM '12. pp. 1960- 1964 ,(2012) , 10.1145/2396761.2398552
Eirini Giannakidou, Ioannis Kompatsiaris, Athena Vakali, SEMSOC: SEMantic, SOcial and Content-Based Clustering in Multimedia Collaborative Tagging Systems ieee international conference semantic computing. pp. 128- 135 ,(2008) , 10.1109/ICSC.2008.73
Daniel Ramage, Paul Heymann, Christopher D. Manning, Hector Garcia-Molina, Clustering the tagged web Proceedings of the Second ACM International Conference on Web Search and Data Mining - WSDM '09. pp. 54- 63 ,(2009) , 10.1145/1498759.1498809
C. Cattuto, V. Loreto, L. Pietronero, Semiotic dynamics and collaborative tagging Proceedings of the National Academy of Sciences of the United States of America. ,vol. 104, pp. 1461- 1464 ,(2007) , 10.1073/PNAS.0610487104
William Webber, Alistair Moffat, Justin Zobel, A similarity measure for indefinite rankings ACM Transactions on Information Systems. ,vol. 28, pp. 20- ,(2010) , 10.1145/1852102.1852106
Claudia Wagner, Philipp Singer, Markus Strohmaier, Bernardo Huberman, Semantic Stability and Implicit Consensus in Social Tagging Streams IEEE Transactions on Computational Social Systems. ,vol. 1, pp. 108- 120 ,(2014) , 10.1109/TCSS.2014.2307455
X. S. Yang, R. Cheng, Luyi Mo, B. Kao, D. W. Cheung, On incentive-based tagging international conference on data engineering. pp. 685- 696 ,(2013) , 10.1109/ICDE.2013.6544866
Lyndon S. Kennedy, Shih-Fu Chang, Igor V. Kozintsev, To search or to label?: predicting the performance of search-based automatic image classifiers multimedia information retrieval. pp. 249- 258 ,(2006) , 10.1145/1178677.1178712