Dual Algorithms in Multidimensional Scaling

作者: Rudolf Mathar

DOI: 10.1007/978-3-642-76307-6_14

关键词:

摘要: A basic problem in Multidimensional Scaling is to minimize the weighted sum of squared differences between given dissimilarities and distances over all Euclidian distance matrices. Existing algorithms solve this a not quite satisfactory way. The present paper aims at development dual which are able find global minimum with sufficient speed convergence.

参考文章(7)
Rudolf Mathar, Algorithms in Multidimensional Scaling Springer, Berlin, Heidelberg. pp. 159- 177 ,(1989) , 10.1007/978-3-642-75040-3_10
David G. Luenberger, Optimization by Vector Space Methods ,(1968)
Jan de Leeuw, Willem Heiser, 13 Theory of multidimensional scaling Handbook of Statistics. ,vol. 2, pp. 285- 316 ,(1982) , 10.1016/S0169-7161(82)02016-1
Jan de Leeuw, Convergence of the majorization method for multidimensional scaling Journal of Classification. ,vol. 5, pp. 163- 180 ,(1988) , 10.1007/BF01897162
Ward Cheney, Allen A. Goldstein, Proximity maps for convex sets Proceedings of the American Mathematical Society. ,vol. 10, pp. 448- 450 ,(1959) , 10.1090/S0002-9939-1959-0105008-8
P. K. Sen, P. R. Krishnaiah, Multivariate Analysis V. Journal of the American Statistical Association. ,vol. 77, pp. 221- ,(1982) , 10.2307/2287807