When does disengagement correlate with learning in spoken dialog computer tutoring

作者: Kate Forbes-Riley , Diane Litman

DOI: 10.3233/JAI-130028

关键词:

摘要: We investigate whether an overall student disengagement label and six different labels of type are predictive learning in a spoken dialog computer tutoring corpus. Our results show first that although students' percentage disengaged turns negatively correlates with the amount they learn, individual types correlate differently learning: some learning, while others don't at all. Second, we these relationships change somewhat depending on prerequisite knowledge level. Third, using multiple to predict improves power. Overall, our suggest adapting should improve maximizing requires system interventions type.

参考文章(40)
Alexander I. Rudnicky, Rebecca J. Passonneau, Bryan L. Pellom, Alexandros Potamianos, Elizabeth Owen Bratt, David Stallard, John S. Aberdeen, Marilyn A. Walker, Gregory A. Sanders, Salim Roukos, Helen Wright Hastie, Rashmi Prasad, John S. Garofolo, Audrey N. Le, Stephanie Seneff, DARPA communicator: Cross-system results for the 2001 evaluation conference of the international speech communication association. ,(2002)
Joseph E. Beck, Engagement tracing: using response times to model student disengagement artificial intelligence in education. pp. 88- 95 ,(2005)
Michael Ringenberg, Brian Hall, Pamela W. Jordan, Carolyn Rosé, Yui Cue, Tools for Authoring a Dialogue Agent that Participates in Learning Studies artificial intelligence in education. pp. 43- 50 ,(2007)
Laurence Devillers, Björn W. Schuller, Stefan Steidl, Felix Burkhardt, Shrikanth S. Narayanan, Anton Batliner, Christian A. Müller, The INTERSPEECH 2010 Paralinguistic Challenge conference of the international speech communication association. pp. 2794- 2797 ,(2010)
Rui Xia, Je Hun Jeon, Yang Liu, Level of interest sensing in spoken dialog using multi-level fusion of acoustic and lexical evidence conference of the international speech communication association. pp. 2802- 2805 ,(2010)
Shazia Afzal, Peter Robinson, Natural Affect Data: Collection and Annotation Springer, New York, NY. pp. 55- 70 ,(2011) , 10.1007/978-1-4419-9625-1_5
Vincent Aleven, Bruce McLaren, Ido Roll, Kenneth Koedinger, Toward Tutoring Help Seeking intelligent tutoring systems. pp. 227- 239 ,(2004) , 10.1007/978-3-540-30139-4_22
Björn W. Schuller, Stefan Steidl, Anton Batliner, The INTERSPEECH 2009 Emotion Challenge conference of the international speech communication association. pp. 312- 315 ,(2009)
Kurt VanLehn, Pamela W. Jordan, Carolyn P. Rosé, Dumisizwe Bhembe, Michael Böttner, Andy Gaydos, Maxim Makatchev, Umarani Pappuswamy, Michael Ringenberg, Antonio Roque, Stephanie Siler, Ramesh Srivastava, The Architecture of Why2-Atlas: A Coach for Qualitative Physics Essay Writing intelligent tutoring systems. pp. 158- 167 ,(2002) , 10.1007/3-540-47987-2_20
Beverly P. Woolf, Hasmik Meheranian, Andrew Barto, Toby Dragon, Kimberly Ferguson, Ivon Arroyo, Jeff Johns, Sridhar Mahadevan, Don Fisher, Repairing Disengagement With Non-Invasive Interventions artificial intelligence in education. ,vol. 158, pp. 195- 202 ,(2007)