First passage time problem: a Fokker-Planck approach

作者: Mingzhou Ding , Govindan Rangarajan

DOI: 10.1007/978-3-662-08968-2_3

关键词:

摘要: This chapter reviews the first passage time problem for one-dimensional stochastic processes and presents closed-form solutions underlying distribution function. Using Fokker-Planck approach case of Brownian motion with drift is solved in diffusive limit. technique then generalized to obtain exact anomalous diffusion, corresponding a continuous random walk.

参考文章(31)
K. E. Shuler, Stochastic processes in chemical physics Interscience. ,(1969)
Crispin W. Gardiner, Handbook of Stochastic Methods Springer Series in Synergetics. ,(1983) , 10.1007/978-3-662-02377-8
T. A. A. B., A. Erdelyi, Tables of Integral Transforms. I The Mathematical Gazette. ,vol. 39, pp. 337- ,(1955) , 10.2307/3608613
T. F. Nonnenmacher, Ewald R. Weibel, G. A. Losa, Fractals in Biology and Medicine ,(1994)
Bruce J. West, Paolo Grigolini, Ralf Metzler, Theo F. Nonnenmacher, Fractional diffusion and Lévy stable processes Physical Review E. ,vol. 55, pp. 99- 106 ,(1997) , 10.1103/PHYSREVE.55.99
Geoffrey R. Grimmett, David Stirzaker, Probability and random processes ,(1982)