Traditional Approaches in Background Modeling for Static Cameras

作者: Thierry Bouwmans , None

DOI:

关键词:

摘要: This chapter gives an overview of traditional background modeling and foreground detection, presents resources, datasets codes publicly available.

参考文章(331)
Vittorio Murino, Marco Cristani, A Spatial Sampling Mechanism for Effective Background Subtraction international conference on computer vision theory and applications. pp. 403- 410 ,(2007)
Fatih Porikli, C Wren, None, Change Detection by Frequency Decomposition: Wave-Back ,(2005)
Junqiu Wang, Yasushi Yagi, Efficient background subtraction under abrupt illumination variations asian conference on computer vision. pp. 675- 688 ,(2012) , 10.1007/978-3-642-37331-2_51
Charles-Henri Quivy, Itsuo Kumazawa, Background images generation based on the nelder-mead simplex algorithm using the eigenbackground model international conference on image analysis and recognition. pp. 21- 29 ,(2011) , 10.1007/978-3-642-21593-3_3
Charles Guyon, Thierry Bouwmans, El-Hadi Zahzah, Moving Object Detection via Robust Low Rank Matrix Decomposition with IRLS Scheme international symposium on visual computing. pp. 665- 674 ,(2012) , 10.1007/978-3-642-33179-4_63
Vittorio Murino, Marco Cristani, BACKGROUND SUBTRACTION WITH ADAPTIVE SPATIO-TEMPORAL NEIGHBORHOOD ANALYSIS international conference on computer vision theory and applications. pp. 484- 489 ,(2008)
N. Avinash, M. S. Shashi Kumar, S. M. Sagar, Automated Video Surveillance for Retail Store Statistics Generation Springer, India. pp. 585- 596 ,(2013) , 10.1007/978-81-322-0997-3_52
Tom S. F. Haines, Tao Xiang, Background subtraction with dirichlet processes european conference on computer vision. pp. 99- 113 ,(2012) , 10.1007/978-3-642-33765-9_8
Dar-Shyang Lee, Improved Adaptive Mixture Learning for Robust Video Background Modeling. Journal of Machine Vision and Applications. pp. 443- 446 ,(2002)
Lucia Maddalena, Alfredo Petrosino, Self Organizing and Fuzzy Modelling for Parked Vehicles Detection advanced concepts for intelligent vision systems. pp. 422- 433 ,(2009) , 10.1007/978-3-642-04697-1_39