A linear, decoupled fractional time‐stepping method for the nonlinear fluid–fluid interaction

作者: Jian Li , Pengzhan Huang , Chong Zhang , Gaihui Guo

DOI: 10.1002/NUM.22382

关键词:

摘要:

参考文章(29)
Ann S. Almgren, John B. Bell, Phillip Colella, Louis H. Howell, Michael L. Welcome, A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier–Stokes Equations Journal of Computational Physics. ,vol. 142, pp. 1- 46 ,(1998) , 10.1006/JCPH.1998.5890
Alexandre Joel Chorin, Numerical solution of the Navier-Stokes equations Mathematics of Computation. ,vol. 22, pp. 745- 762 ,(1968) , 10.1090/S0025-5718-1968-0242392-2
Jie Shen, Xiaofeng Yang, DECOUPLED, ENERGY STABLE SCHEMES FOR PHASE-FIELD MODELS OF TWO-PHASE INCOMPRESSIBLE FLOWS ∗ SIAM Journal on Numerical Analysis. ,vol. 53, pp. 279- 296 ,(2015) , 10.1137/140971154
Jie Shen, Xiaofeng Yang, Decoupled Energy Stable Schemes for Phase-Field Models of Two-Phase Complex Fluids SIAM Journal on Scientific Computing. ,vol. 36, ,(2014) , 10.1137/130921593
Jonas Koko, Didier Bresch, Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids International Journal of Applied Mathematics and Computer Science. ,vol. 16, pp. 419- 429 ,(2006)
Jae-Hong Pyo, Jie Shen, Gauge-Uzawa methods for incompressible flows with variable density Journal of Computational Physics. ,vol. 221, pp. 181- 197 ,(2007) , 10.1016/J.JCP.2006.06.013
Jia Zhao, Xiaofeng Yang, Jie Shen, Qi Wang, A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids Journal of Computational Physics. ,vol. 305, pp. 539- 556 ,(2016) , 10.1016/J.JCP.2015.09.044
Xiaoming He, Jian Li, Yanping Lin, Ju Ming, A Domain Decomposition Method for the Steady-State Navier-Stokes-Darcy Model with Beavers-Joseph Interface Condition SIAM Journal on Scientific Computing. ,vol. 37, ,(2015) , 10.1137/140965776
Rui Li, Jian Li, Zhangxin Chen, Yali Gao, A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem Journal of Computational and Applied Mathematics. ,vol. 292, pp. 92- 104 ,(2016) , 10.1016/J.CAM.2015.06.014