The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant

作者: Igor Rodnianski , Jared Speck

DOI:

关键词:

摘要: In this article, we study small perturbations of the family Friedmann-Lema\^itre-Robertson-Walker cosmological background solutions to Euler-Einstein system with a positive constant in 1 + 3 dimensions. The describe an initially uniform quiet fluid energy density evolving spacetime undergoing accelerated expansion. We show that under equation state p = c_s^2*(energy density), 0 < c_s^2 1/3, are globally future asymptotically stable irrotational perturbations. particular, prove perturbed spacetimes, which have topological structure [0,infinity) x T^3, causally geodesically complete.

参考文章(27)
Sergiu Klainerman, Francesco Nicolò, The Evolution Problem in General Relativity ,(2002)
L. Nirenberg, On elliptic partial differential equations Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 13, pp. 115- 162 ,(1959) , 10.1007/978-3-642-10926-3_1
Michael Struwe, Jalal M. Ihsan Shatah, Geometric wave equations ,(1998)
Theophile de Donder, La gravifique einsteinienne Annales de l'Observatoire Royal de Belgique. ,vol. 1, pp. 73- 268 ,(1921)
Sergiu Klainerman, Demetrios Christodoulou, The Global Nonlinear Stability of the Minkowski Space. ,(1994)
A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin. pp. 130- 139 ,(1923) , 10.1007/978-3-663-19510-8_9
Demetrios Christodoulou, The Euler Equations of Compressible Fluid Flow Bulletin of the American Mathematical Society. ,vol. 44, pp. 581- 602 ,(2007) , 10.1090/S0273-0979-07-01181-0