A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics

作者: Eric Bastos Görgens , Alessandro Montaghi , Luiz Carlos Estraviz Rodriguez

DOI: 10.1016/J.COMPAG.2015.07.004

关键词:

摘要: … The number of metrics can easily reach hundreds of variables, and the selection of these metrics remains an empirical process highly dependent on human intervention. After …

参考文章(50)
Stephen E. Reutebuch, Hans-Erik Andersen, Robert J. McGaughey, Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. Journal of Forestry. ,vol. 103, pp. 286- 292 ,(2005) , 10.1093/JOF/103.6.286
Matthew Wiener, Andy Liaw, Classification and Regression by randomForest ,(2007)
Jocelyn Chanussot, Lori M. Bruce, Saurabh Prasad, Optical Remote Sensing: Advances in Signal Processing and Exploitation Techniques Springer. ,(2011)
W. N. Venables, B. D. Ripley, Modern Applied Statistics with S Springer. ,(2010) , 10.1007/978-0-387-21706-2
Alex J. Smola, Bernhard Schölkopf, A tutorial on support vector regression Statistics and Computing. ,vol. 14, pp. 199- 222 ,(2004) , 10.1023/B:STCO.0000035301.49549.88
Wim Aertsen, Vincent Kint, Jos van Orshoven, Kürşad Özkan, Bart Muys, Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests Ecological Modelling. ,vol. 221, pp. 1119- 1130 ,(2010) , 10.1016/J.ECOLMODEL.2010.01.007
Kevin S. Lim, Paul M. Treitz, Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators Scandinavian Journal of Forest Research. ,vol. 19, pp. 558- 570 ,(2004) , 10.1080/02827580410019490
Melanie A. Murphy, Jeffrey S. Evans, Andrew Storfer, Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics Ecology. ,vol. 91, pp. 252- 261 ,(2010) , 10.1890/08-0879.1
Colin J. Gleason, Jungho Im, Forest biomass estimation from airborne LiDAR data using machine learning approaches Remote Sensing of Environment. ,vol. 125, pp. 80- 91 ,(2012) , 10.1016/J.RSE.2012.07.006