Numerical investigation of the smallest eigenvalues of the p-Laplace operator on planar domains

作者: Jiří Horák

DOI:

关键词:

摘要: The eigenvalue problem for the p-Laplace operator with p>1 on planar domains zero Dirichlet boundary condition is considered. Constrained Descent Method and Mountain Pass Algorithm are used in Sobolev space setting to numerically investigate dependence of two smallest eigenvalues p. Computations conducted values p between 1.1 10. Symmetry properties second eigenfunction also examined numerically. While disk an odd symmetry about nodal line dividing halves maintained all considered p, rectangles triangles changes as varies. Based numerical evidence change this case occurs at a certain value p_0 which depends domain.

参考文章(15)
Petri Juutinen, Peter Lindqvist, ON THE HIGHER EIGENVALUES FOR THE ∞-EIGENVALUE PROBLEM ,(2004)
J.-L Lions, Aomar Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 305, pp. 725- 728 ,(1987)
Y.S. Choi, P.J. McKenna, A mountain pass method for the numerical solution of semilinear elliptic problems Nonlinear Analysis-theory Methods & Applications. ,vol. 20, pp. 417- 437 ,(1993) , 10.1016/0362-546X(93)90147-K
Jiří Benedikt, Pavel Drábek, Petr Girg, The second eigenfunction of the -Laplacian on the disk is not radial Nonlinear Analysis: Theory, Methods & Applications. ,vol. 75, pp. 4422- 4435 ,(2012) , 10.1016/J.NA.2011.06.012
E. DiBenedetto, C1 + α local regularity of weak solutions of degenerate elliptic equations Nonlinear Analysis: Theory, Methods & Applications. ,vol. 7, pp. 827- 850 ,(1983) , 10.1016/0362-546X(83)90061-5
John W. Barrett, W. B. Liu, Finite element approximation of the p -Laplacian Mathematics of Computation. ,vol. 61, pp. 523- 537 ,(1993) , 10.1090/S0025-5718-1993-1192966-4
Pavel Drábek, Stephen B Robinson, None, On the Generalization of the Courant Nodal Domain Theorem Journal of Differential Equations. ,vol. 181, pp. 58- 71 ,(2002) , 10.1006/JDEQ.2001.4070
Bernd Kawohl, Thomas Lachand-Robert, CHARACTERIZATION OF CHEEGER SETS FOR CONVEX SUBSETS OF THE PLANE Pacific Journal of Mathematics. ,vol. 225, pp. 103- 118 ,(2006) , 10.2140/PJM.2006.225.103
M. Cuesta, D. de Figueiredo, J.-P. Gossez, The Beginning of the Fučik Spectrum for the p-Laplacian Journal of Differential Equations. ,vol. 159, pp. 212- 238 ,(1999) , 10.1006/JDEQ.1999.3645