ON SEQUENCES OF PAIRS OF DEPENDENT RANDOM VARIABLES

作者: H. S. Witsenhausen

DOI: 10.1137/0128010

关键词:

摘要: The generalized random variables $( {x,y} )$ have a given joint distribution. Pairs {x_i ,y_i } are drawn independently. observer of {x_1 , \cdots ,x_n and the {y_1 ,y_n each make binary decision, entropy bounded away from zero, with probability disagreement $\varepsilon _n $. It is shown that $ can be made to approach zero as $n \to \infty if only maximum correlation x y unity. Under compactness condition, satisfied in particular when and/or takes finitely many values, this occurs distribution decomposes, _1 vanish by nontrivial decisions, had been conjectured.Results also obtained for nonidentically distributed pairs, randomized multivalued decisions based on infinite sequences.The question arose transmission data two dependent sources receivers. results Gac...

参考文章(4)
Hans Gebelein, Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. ,vol. 21, pp. 364- 379 ,(1941) , 10.1002/ZAMM.19410210604
A. Wyner, A theorem on the entropy of certain binary sequences and applications--II IEEE Transactions on Information Theory. ,vol. 19, pp. 772- 777 ,(1973) , 10.1109/TIT.1973.1055108
H. O. Hirschfeld, A Connection between Correlation and Contingency Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 31, pp. 520- 524 ,(1935) , 10.1017/S0305004100013517
Walter Rudin, Functional Analysis ,(1973)